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This systematic review and meta-analysis comprehensively analyzes deep learning approaches for brain
electron microscopy (EM) segmentation, addressing the critical challenge of extracting neuroanatomical
information at nanometer resolution. Following PRISMA guidelines, we identified 60 studies through struc-
tured database searches, with quantitative meta-analysis of 27 studies (46 experiments) across 10 datasets
providing the first unified benchmark comparison in this domain. Our analysis reveals a field transitioning
from traditional CNN approaches toward foundation models and hybrid architectures. The meta-analysis
demonstrates that foundation models outperform traditional CNNs by 13%-35% across key metrics, with
the 3D Transformer + U-Net achieving the highest composite score (0.954) across five datasets. Meta-
analysis confirms significant advantages for foundation models in instance-based metrics (Cohen’s d = —6.44),
while only 26% of experiments validate across multiple datasets. Four key evolutionary trends emerge: (1)
transition from 2D to 3D architectures optimized for ultrastructural complexity; (2) development of topology-
preserving loss functions and evaluation metrics (clDice, ERL) that prioritize neural connectivity over pixel-wise
accuracy; (3) emergence of self-supervised and foundation model adaptation techniques reducing annotation
dependency; and (4) evolution toward specialized architectures capturing long-range dependencies critical
for neural structures. Performance analysis reveals that mitochondria segmentation achieves highest accuracy
(Jaccard scores 87.2-90.5%), while computational requirements vary from single-GPU implementations to
distributed systems with 48 GPUs for teravoxel-scale volumes. Despite progress, reproducibility challenges
persist with only 54% of studies providing public code repositories. These advances drive innovation in 3D
computer vision, establish new benchmarks for volumetric instance segmentation, and address fundamental
challenges in processing massive biological datasets. Our unified benchmarks and comprehensive analysis
provide a foundation for systematic progress tracking and evidence-based method selection, positioning brain
EM segmentation to enable large-scale connectomics studies and detailed neuroanatomical mapping across
scales.

1. Introduction developed to capture the complicated details of neural tissue, each with

distinct advantages for different brain mapping applications.

Understanding the brain’s complex architecture—its synaptic con-
nections, organelles, and nanoscale neuronal processes—is fundamental
for decoding the biological basis of cognition, behavior, and neuro-
logical disease. Electron microscopy (EM) has emerged as a crucial
modality for this task, enabling structural imaging at sub-nanometer
resolution—far surpassing the capabilities of light microscopy [1,2].
Multiple specialized EM and complementary techniques have been

Serial section Transmission EM (ssTEM) involves imaging tissue
sections that are computationally aligned, providing resolution for
neural circuit reconstruction [3], while Transmission EM (TEM) enables
examination of structures with electrons passing through specimens to
image components [4]. Scanning EM (SEM) detects secondary elec-
trons from specimen surfaces to create topography images [5], with
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Fig. 1. Current SOTA segmentation methods for 3D EM are effective for well-defined cellular structures like mitochondria, while they struggle when segmenting

complex processes with fractal structures like glia cells Shah et al. [21].

variants including Focused Ion Beam-SEM (FIB-SEM) that mills tis-
sue layers between imaging for z-axis resolution, Serial Block-Face
SEM (SBF-SEM) using ultra-microtome for section acquisition, Auto-
mated Tape-collecting Ultra-microtome SEM (ATUM-SEM) collecting
sections on tape for imaging, and Multi-beam SEM employing multiple
electron beams to increase imaging throughput. Together with EM,
optical microscopy techniques including Fluorescence Micro-Optical
Sectioning Tomography (fMOST) [6], light-sheet microscopy, confocal
microscopy, and X-ray microscopy are used to image samples at dif-
ferent resolutions. Through all these specialized imaging techniques,
researchers can capture ultrastructural details—subcellular structures
visible at nanometer resolution—such as synaptic vesicles, mitochon-
drial cristae, and myelinated axons [7,8], thereby supporting both the
mapping of complete neural circuits (connectomics) and the charac-
terization of subcellular variations in neuro-degenerative disorders [9,
10].

Despite EM’s imaging power, the extraction of biological meaning
remains hampered by the segmentation process—labeling each pixel or
voxel according to cellular structures such as neurons, mitochondria,
synapses, or nuclei. Manual and semi-automated approaches are pro-
hibitively labor-intensive: reconstructing just one cubic millimeter of
mouse cortex can require annotating more than 1000 terabytes of im-
age data [11,12], making manual workflows unsustainable for modern-
scale projects. Even widely-used interactive tools like ilastik or
Fiji’s Trainable Weka Segmentation struggle to scale efficiently and
are sensitive to heterogeneities in staining quality, anisotropic resolu-
tion, and complex tissue architecture [13,14]. Algorithmic segmenta-
tion methods—including watershed and region-growing techniques—
are computationally demanding and error-prone, especially in noisy
or ambiguous boundaries [15,16]. These computational constraints are
intensified by inter-annotator variability, which can exceed 20% in
complex regions like dendritic spines and postsynaptic densities [17,
18], undermining the reproducibility of quantitative analyses.

Deep learning (DL) offers a transformative alternative by automat-
ing both feature extraction and multiscale contextual understanding,
which are critical for accurate EM segmentation. Convolutional Neural
Networks (CNNs), such as U-Net and Mask R-CNN, are currently used
for segmenting complex biological structures in EM datasets [2,19],
while hybrid, transformer-based, and foundation models are rapidly
improving state-of-the-art metrics across multiple benchmarks [18,20,
21] (as shown in Fig. 1). DL scales where manual methods cannot:
distributed training pipelines can process large volumes efficiently [9],
while lightweight architectures achieve real-time inference capabili-
ties [22].

Methodological innovations—including topology-preserving loss
functions like centerline-Dice (clDice), which measures structural con-
nectivity preservation [9], contrastive learning modules [23,24], and
joint semantic-instance training paradigms [25]—further refine seg-
mentation accuracy and generalization.

Despite these advances, brain-specific EM segmentation faces
unique challenges that necessitate specialized approaches. Neural tis-
sues exhibit intricate ultrastructures including synaptic clefts [9],

Fig. 2. Mouse rendering: Full 3D reconstruction of the data in the stack
rendered using Blender software. Left: glia (green), mitochondria (white),
synapses (pink). Right: glia (light gray), mitochondria (purple), and post-
synaptic densities (orange).

myelinated axons [10], and complex layered mitochondria [26], which
require sub-nanometer precision and topology-aware models to accu-
rately capture delicate morphological relationships. Fig. 2 illustrates
this complexity by showcasing a 3D reconstruction of mouse neural
tissue with distinctly labeled glial processes (green/light gray), mito-
chondria (white/purple), and synaptic elements (pink/orange). Scala-
bility remains critical—whole-brain segmentation requires substantial
computational resources [7,9]—while reproducibility challenges per-
sist, with only about half of published studies providing accessible code
and pretrained models [2,25,27] versus others lacking implementation
disclosure [1].

1.1. Comparison with existing reviews and objectives

Previous reviews have examined deep learning in microscopy or
EM image analysis, but none have specifically synthesized DL-based
segmentation for brain EM datasets (see Table 1 for detailed com-
parison). A recent survey on general EM segmentation [28] provides
a broad overview of DL advancements in semantic and instance seg-
mentation (2017-2022), but covers various cell types without focusing
on brain-specific challenges. Our review exclusively addresses brain
EM segmentation, emphasizing regions like cortex, hippocampus, and
peripheral nervous system. A broader microscopy review [29] sur-
veys DL applications across microscopy tasks including classification
and tracking, highlighting CNN architectures and dataset challenges,
but remains general and overlooks segmentation challenges specific
to neural ultrastructure such as membrane continuity and synaptic
connections. A third survey [30] focuses on nuclei and cell detec-
tion in light microscopy images from cancer and Alzheimer’s tissues,
offering insights into stereological analysis but remaining confined
to stained light microscopy data without addressing high-resolution,
densely packed brain EM environments necessary for neuroanatomical
mapping. A fourth review [31] explores broader machine learning
applications in EM across physical and life sciences, including denoising
and inpainting, while identifying common neural network architec-
tures and EM-specific adaptations, but lacks systematic analysis of
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Comparison of this survey with five existing reviews. A checkmark (v) indicates explicit coverage; a dash (-) means the aspect is outside the stated scope.

Liu et al. [29] Alahmari et al. [30] Treder et al. [31] Huo et al. [32]

Dimension Our Aswath et al. [28]
Primary modality = EM v v

Brain tissue only v -
Segmentation focus v v

Spatial scales v v
Architectures v CNN
Brain-specific metrics (CREMI, clDice) v -
Scalability (teravoxel, multi-GPU) v partial
Reproducibility/code audit v -
Meta-Analysis v -

Years covered 19-25 16-22
Unique contribution brain EM seg. generic EM

_ _ v _
partial® /P - partial®
cell-tissue nuclei partial partial
CNN CNN mixed CNN

- - partial -

17-21 16-19 18-22 20-24
broad micro. nuclei seg. ML for EM cell img.

2 Segmentation addressed among multiple tasks.
b Light-microscopy nuclei, not EM.
¢ Focuses on enhancement/recognition; segmentation only tangential.

segmentation models and anatomical specificity critical for brain EM
tasks. Finally, a recent survey [32] primarily addresses low-level im-
age processing tasks like denoising and single-cell behavior modeling,
without considering neural tissue segmentation, extreme data scales, or
fine-grained annotation requirements essential for brain ultrastructure
reconstruction.

As detailed in Table 1, our review fills this critical gap by focus-
ing exclusively on DL-based segmentation methods applied to brain-
specific EM datasets across model organisms, including mouse, human,
Drosophila, zebrafish, and C. elegans. These datasets span multiple
spatial scales—from subcellular organelles to whole neurons and neu-
ral circuits—including neuronal morphology reconstruction, organelle
segmentation, and fine-scale subcellular analysis. Our objectives are
fourfold: (1) to synthesize and compare key DL methodologies,
including CNN variants, transformer-based models, and foundation
models, along with specialized loss functions and training paradigms;
(2) to evaluate segmentation performance through a detailed meta-
analysis of 27 studies (46 experiments) across 10 datasets, providing
unified benchmark tables, normalized comparisons, and statistical anal-
ysis of method categories and cross-dataset trends; (3) to identify
existing challenges, including limited reproducibility and task-specific
weaknesses; and (4) to propose future directions, advocating for
topology-aware approaches and open-source frameworks.

This review is guided by key questions designed to identify trends,
benchmark performance, and expose limitations across seven major
dimensions. We thoroughly examine which brain EM datasets domi-
nate the literature and how data processing pipelines affect segmen-
tation quality, analyze the evolution and comparative performance
of deep learning architectures from CNNs to transformers, catego-
rize segmentation tasks by complexity and structural targets, evaluate
performance metrics and scalability considerations, address practical
implementation challenges including computational requirements and
reproducibility, and conduct an extensive meta-analysis of segmenta-
tion methods across datasets and metrics. To ensure rigor, we include
only DL-based segmentation studies of brain EM, excluding non-neural
or non-deep learning approaches, spanning semantic segmentation, in-
stance segmentation, and panoptic modeling across conventional CNNs,
vision transformers, and hybrid models.

In contrast to broader or differently focused reviews, our work
offers several distinct contributions structured across our seven findings
sections. Through a focused investigation of Datasets in Brain EM
Segmentation, we identify dominant datasets and their characteristics;
Data Processing Pipeline examination reveals critical preprocessing
steps affecting performance; Deep Learning Architectures synthesis
compares architectural evolution from U-Net variants to transformer-
based models; Segmentation Tasks categorization addresses task-
specific challenges and solutions; Evaluation and Performance as-
sessment provides robust benchmarking; Practical Considerations
analysis addresses real-world implementation challenges; and our novel

Meta-Analysis of Segmentation Methods provides the first statis-
tical synthesis of cross-dataset performance trends through unified
benchmark tables and normalized comparisons—directly addressing
the concerns about rational performance presentation. Through this
seven-dimensional analysis, our review serves as both a definitive
reference and practical roadmap for future developments in neural
tissue analysis, uniquely combining technical depth with statistical
rigor in the brain EM segmentation domain.

2. Methods

This review was conducted following established guidelines for
systematic reviews of computational studies, with particular attention
to the unique considerations required for deep learning and medical
imaging research. Our methodology encompassed extensive literature
searching, rigorous study selection, data extraction, quality assessment,
and structured synthesis approaches designed to capture the multidi-
mensional nature of brain EM segmentation research while maintaining
scientific rigor and reproducibility.

2.1. Search strategy

A broad literature search was conducted across five major data-
bases: PubMed, IEEE Xplore, Web of Science (WoS), Google Scholar,
and arXiv. The search aimed to identify studies that applied deep
learning (DL) methods to segmentation tasks in brain electron mi-
croscopy (EM) data. Our search strategy incorporated a detailed set
of terms organized into three conceptual categories: (1) deep learning
techniques, (2) connectomics and brain mapping applications, and (3)
volumetric and microscopy data characteristics.

The following search string was consistently applied across all
databases, with appropriate syntax modifications for each platform:

¢

((((“‘deep learning’’ OR ‘‘artificial intellig-
ence’’ OR ‘ ‘neural network*’’ OR ‘ ‘machine learn-
ing’’ OR ‘‘AI’’OR ‘‘deep neural network*’’0OR
‘‘“transformer*’’ OR ¢ ‘convolutional neural netw-
ork*’’)) AND ((‘ ‘connectom*’’ OR ¢ ‘brain mapping’’
OR ¢ ‘neural circuit*’’ OR ¢ ‘brain reconstruction’’
OR ‘‘neuroanatomy’’ OR ‘‘brain imaging’’ OR
‘‘neural reconstruction’’))) AND ((°‘3D’’ OR
‘‘three-dimensional’’ OR ‘ ‘multiscale’’ OR ‘‘mul
ti-scale’’ [ OR ¢ ‘volumex’’ OR ‘large-scale’’0R
‘‘microscopy’’)))

The search encompassed publications from January 2019 to April
2025, including both peer-reviewed journal articles and conference pro-
ceedings as well as preprints. The initial search yielded 2,330 records
distributed across databases as follows: PubMed (n = 621), Web of
Science (n = 859), IEEE Xplore (n = 496), arXiv (n = 154), and Google
Scholar (n = 200). After removing 684 duplicates through automated
and manual screening processes, 1546 unique records remained for
further evaluation.
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n = 1392 excluded after scanning titles and abstracts:
- Non-Brain Reconstruction/Connectomics: n= 884

- Irrelevant- Review, Survey, Overview: n= 111
- Neither Deep Learning nor Brain Reconstruction: n =20
- Wrong Publication (e.g. proceedings, non-English): n =5

n =102 publications excluded after scanning full texts:
- Non-Brain Reconstruction/Connectomics: n= 42

n =8 added from Arixv

U. Shah et al.
M) PubMed = 621
= WoS =859 IEEE = 496 Arxiv = 154
;% Google Scholar =200
& Total = n=2330
b=
=
=
§ l—b{ n =684 duplicates removed
p— n = 1546 unique titles and abstracts ‘
o - Non-Deep Learning: n =372
£ >
=
7}
o
=
[}
«n
v
n =154 unique full-text studies
)
—
& X
g - Non-Segmentation: n =37
éﬂ - Non- Electron microscopy (EM) n=23
-
)
-
g5
= n =60 Studies included for
] analysi
S ysis
—
—/

Fig. 3. PRISMA flowchart illustrating study selection.

2.2. Study selection

The study selection process was implemented in two sequential
phases: initial title/abstract screening followed by full-text review.
Predetermined inclusion and exclusion criteria were established to
ensure consistent evaluation across all authors and maintain focus on
the research objectives.

During the title and abstract screening phase, 1392 studies were
excluded based on predetermined criteria. The majority of exclusions (n
= 884) comprised studies not focused on brain connectomics or neural
reconstruction. Additional exclusions included research not employing
deep learning methodologies (n = 372), reviews or surveys without
primary research content (n = 111), publications addressing neither
deep learning nor brain reconstruction/connectomics (n = 20), and
inappropriate publication types or non-English language publications
(n =5).

Subsequent full-text screening was conducted on the remaining 154
articles, resulting in 102 further exclusions. These comprised studies
focusing on non-brain connectomics applications (n = 42), research
primarily addressing tasks other than segmentation (n = 37), and
studies using imaging modalities other than EM or light microscopy (n
= 23).

During the review process, an additional 8 relevant studies were
identified through supplementary searches. Consequently, a final cor-
pus of 60 studies was included in the review. The PRISMA flow
diagram in Fig. 3 provides a visual representation of the complete
selection process.

2.3. Data extraction

A standardized data extraction form was developed to consistently
capture relevant information from each included study. The extraction
framework was designed to capture both technical methodological
details and practical implementation considerations essential for a thor-
ough analysis of deep learning approaches in brain EM segmentation.

The extracted data were organized into four primary categories.
Study details included authors, journal or conference name, and publi-
cation year. Dataset characteristics encompassed dataset identification
(e.g., CREMI, MitoEM), acquisition modality (FIB-SEM, ssTEM), brain
region examined (e.g., cortex, hippocampus), voxel resolution, volume
dimensions, and annotated structure types (e.g., synapses, mitochon-
dria, axons).

Methodological information comprised segmentation approach (se-
mantic or instance), model architecture (e.g., U-Net, feature pyra-
mid network), training paradigm (supervised, semi-supervised, non-
supervised), preprocessing and postprocessing techniques, data aug-
mentation strategies, loss functions, evaluation metrics (e.g., Dice,
Variation of Information (VOI), ARAND, clDice, ERL), and validation
methodology. Performance and reproducibility data included quantita-
tive results, computational scalability, and code availability assessment.

2.4. Quality assessment
Methodological quality and risk of bias were evaluated for each

included study using a customized assessment checklist specifically de-
signed for computational imaging research. The assessment framework
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addressed the unique challenges of evaluating deep learning studies
where traditional clinical trial quality measures may not directly apply.

The assessment criteria examined three core dimensions: (1) ex-
perimental rigor, including adequacy of train/test splits, validation
methodology, and statistical analysis; (2) reporting completeness,
encompassing documentation of hyperparameters, training procedures,
and implementation details; and (3) reproducibility factors, evaluat-
ing code availability, data accessibility, and sufficient methodological
detail for replication.

Each study received independent assessment by two authors using
a standardized scoring rubric, with discrepancies resolved through
consensus discussion. Quality scores informed confidence levels for
individual study findings and weighted meta-analysis contributions
where appropriate.

2.5. Data synthesis and meta-analysis

The synthesis strategy combined qualitative narrative analysis with
quantitative meta-analysis to maximize information extraction while
accommodating methodological heterogeneity across studies. The ap-
proach was designed to identify field-wide patterns while enabling
statistical comparison where data permitted.

Narrative Synthesis: Qualitative synthesis examined architectural
trends, dataset utilization patterns, evaluation metric evolution, and
computational considerations across the research landscape. Studies
were categorized methodically by method type, target structures, and
experimental approaches to identify convergent practices and emerging
directions. Quantitative Meta-Analysis: For studies reporting compa-
rable performance metrics on shared datasets, quantitative synthesis
was conducted to establish unified benchmark comparisons. Inclusion
criteria required studies to report: (i) clearly documented test sam-
ple sizes, (ii) evaluation on datasets used by >2 studies, and (iii) at
least one standardized metric (Dice coefficient, Jaccard index, Average
Precision, F1-score, Precision, Recall, VOI, or ARAND).

Of the 60 studies encompassing 28 datasets, 27 studies (46 exper-
iments) across 10 datasets met stringent selection criteria for quanti-
tative analysis. The synthesis employed descriptive statistical analysis,
one-way ANOVA testing for between-group comparisons, effect size
analysis using Cohen’s d, and correlation analysis for metric relation-
ships. Performance comparisons were standardized across method cat-
egories (CNN-based, Transformer-based, Hybrid, Foundation models),
datasets (CREMI, MitoEM, SNEMI3D, Lucchi, etc.), and segmentation
targets (neurons, mitochondria, synapses).

A composite scoring system was developed to rank methods across
multiple metrics, enabling unified benchmark table generation for di-
rect cross-dataset performance comparison. Statistical significance test-
ing was conducted using one-way ANOVA (a = 0.05), with effect sizes
calculated to quantify practical significance of performance differences
between method categories.

3. Findings

This in-depth review of brain EM segmentation presents our find-
ings across seven critical dimensions of the field. By examining 60
studies spanning 28 datasets, we characterize the current landscape
from data foundations through methodological innovations to practical
deployment considerations. Our analysis reveals both convergent best
practices and emerging technological frontiers that collectively define
the state-of-the-art in neural ultrastructure analysis.

3.1. Datasets in brain EM segmentation

The foundation of effective brain EM segmentation lies in the
quality, diversity, and accessibility of training and evaluation datasets.
Our analysis of 28 distinct datasets reveals how dataset characteristics—
from anatomical targets to acquisition modalities—fundamentally shape
methodological development and performance benchmarking across the
field.

Computers & Graphics 132 (2025) 104391

3.1.1. Overview

This review identified 28 distinct datasets across the selected studies
designed for brain EM segmentation, each contributing uniquely to
the field through their anatomical focus, imaging modality, and anno-
tated structures (Supplementary A Table 1). The mouse somatosensory
cortex emerged as the most frequently studied brain region, repre-
sented in high-resolution datasets including SNEMI3D [19,33-37],
Kasthuri++ [22,38-41], and Mouse ATUM-SEM [17,19,42]. These
datasets have proven instrumental in advancing neuronal circuit map-
ping at ultrastructural resolution. Beyond the somatosensory cortex,
researchers have developed specialized collections targeting other crit-
ical brain regions, including the hippocampus presented by EPFL
Hippocampus/Lucchi++ [15,21,25,43-45] and DendriteSAM [20,35],
cerebellum evident in Cerebellar EGL ssSEM [46], and visual cortex
notably in AxonEM [10,47] and h01/MICrONS [48,49]. The anatom-
ical diversity extends through cross-species collections such as EM-
Neuron [49], which incorporates samples from multiple species, and
BigNeuron [2,13,50-55], which spans mouse, human, and zebrafish
nervous systems.

The subcellular targets varied significantly across datasets but con-
sistently focused on key neuroanatomical components essential for
understanding neural connectivity and function. Neuronal membrane
and whole-cell segmentation formed the central focus in datasets like
CREMI [9,23,25,38,40,56-59], SNEMI3D [19,33-37], and FIB-25 [16,
26,58], enabling complete reconstruction of neuronal morphologies
and connectomes. Synaptic structures were specifically annotated in
several datasets including ISBI 2012 [14,42,60], Kasthuri++ [22,38—
41], and WASPSYN [61], with attention to both synaptic clefts and
their pre- and post-synaptic partners. Mitochondrial annotations fea-
tured prominently in specialized datasets such as MitoEM [15,25,37,
38,43-45] and EPFL Hippocampus [15,21,25,43-45], reflecting the
critical importance of these organelles in neural energetics. Nuclei
segmentation was emphasized in datasets like NucMM [25,38,43,62]
and Zebrafish EM dataset [60], providing essential context for cellular
organization.

3.1.2. Data acquisition and properties

Fig. 4 illustrates acquisition methodologies across datasets. 3D
imaging dominates, with ssEM/ssTEM most prevalent across 26 stud-
ies [9,19,21,23,25,57,60], reflecting its reliability for neural tissue
reconstruction; (see Supplementary Material A, Table 2). FIB-SEM
appears in 11 studies [25,43,56,58,61], offering superior resolution
consistency. ATUM-SEM was used in 6 studies [11,17,33,42] and
SBEM/SBF-SEM in 5 studies [11,20,58,63], demonstrating automated
sectioning approaches.

In 2D acquisition, Light/Optical microscopy appeared in 8 stud-
ies [2,13,50,51,53], matching Multi-beam SEM with 8 studies [15,38,
40,43,44]. Other SEM variants were used in 9 studies [1,34,38,39,571],
general EM in 4 studies [12,26,64], and TEM in 2 studies [27,48].
Specialized techniques included fMOST in 4 studies [2,18,52], Light-
sheet Microscopy in 2 studies [7,65], Confocal Microscopy [66], and
3D X-ray Microscopy [62].

The acquisition methodology directly determines resolution char-
acteristics and anisotropy patterns observed across datasets (Supple-
mentary A Table 1). Serial section transmission EM (ssTEM) datasets
typically exhibit moderate anisotropy due to sectioning limitations:
CREMI provides 4 x 4 x 40 nm resolution, ISBI 2012 offers 4 x 4 x 50 nm,
while AC3/AC4 datasets present 12 x 12 x 29 nm voxels. This
anisotropy stems from fundamental technical constraints—xy-plane
resolution is determined by electron beam focus and detector capabil-
ities (readily achieving sub-10 nm precision), while z-axis resolution
depends on physical sectioning thickness, typically constrained to
30-50 nm to avoid section folding, charging artifacts, and signal-to-noise
degradation.

FIB-SEM demonstrates superior isotropy capabilities, with EPFL
Hippocampus datasets maintaining 5 X 5 X 5 nm resolution and FIB-
25 providing 8 x 8 x 8 nm voxels. The controlled ion beam milling
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Fig. 4. Overview of Dataset Acquisition Modalities. The figure categorizes dataset acquisition techniques used in brain EM segmentation studies, classified
by imaging dimensionality (2D vs. 3D) and modality type. Two-dimensional methods include light microscopy, SEM variants, and TEM, while 3D techniques are
dominated by serial section EM (ssEM/ssTEM), FIB-SEM, and ATUM-SEM. The number in parentheses indicates the number of studies utilizing each method, as

detailed in (Supplementary A Table 1).

enables finer z-resolution but requires balanced consideration of ac-
quisition time and potential sample damage. Multi-beam and serial
block-face SEM show intermediate characteristics: MitoEM datasets
offer highly anisotropic 30 x 8 x 8 nm voxels optimized for large-
volume acquisition, while SNEMI3D provides moderate 6 x 6 x 30 nm
resolution.

Volume sizes demonstrate the scale diversity driving methodolog-
ical development, ranging from small subvolumes 512 x 512 x 30
voxels in ISBI 2012 [14,42,60] to massive reconstructions EMNeuron’s
22 billion voxels [49] or whole-brain imaging FlyWire/FAFB with
213 tera-voxels [9,24]. Contemporary datasets increasingly favor near-
isotropic configurations—newer acquisitions like Lucchi 5 x 5 x 5 nm,
FIB-25 8 x 8 x 8 nm, and WASPYN 8 x 8 x 8 nm demonstrate
the field’s progression toward isotropic imaging. However, large-scale
connectomics projects often accept moderate anisotropy to balance
resolution with acquisition throughput and coverage requirements.

These resolution characteristics fundamentally influence segmen-
tation methodology across our analyzed studies. Methods addressing
highly anisotropic datasets (e.g., MitoEM’s 30 x 8 x 8 nm) employ spe-
cialized architectures with anisotropic convolution kernels, resolution-
adaptive loss functions, or multi-scale processing pipelines that explic-
itly model differential information content across spatial dimensions.
Conversely, near-isotropic datasets enable more straightforward 3D
convolution approaches and simplified topology preservation strate-
gies.

3.1.3. Labeling and availability

Labeling strategies across these datasets aligned closely with the
segmentation task types they were designed to address. Semantic
segmentation datasets primarily annotated class boundaries such as
neuronal membranes—evident in ISBI 2012’s membrane annotations
[14,42,60]—or broad cellular compartments. Instance segmentation
datasets targeted the delineation of individual structures—complete
neurons in 6 SNEMI3D studies [19,33-35] and 9 CREMI studies [9,23,
25,56,57], mitochondria in 7 MitoEM studies [15,25,38,43,44] and 6
EPFL Hippocampus studies [15,25,43,44], axons in AxonEM Wei et al.

[10],Liu et al. [47], dendrites in DendriteSAM [20,35], or synapses
in WASPSYN [61]. This distinction in annotation philosophy reflects
different downstream applications. More recently, panoptic tasks have
emerged, integrating both semantic and instance components, as pre-
sented by Dorkenwald et al. [48], Zhang et al. [49], on which simul-
taneously segmented both neurons and glial cells; see Supplementary
Material A, Table 1 for complete dataset details.

Dataset availability varied considerably across the field; see Sup-
plementary Material A, Table 1 for comprehensive details. Many key
benchmarks were openly accessible via GitHub—e.g., ISBI 2012 [14,
42,60], 8 BigNeuron studies [2,13,50,51,53], DendriteSAM [20,35]—
specialized challenge platforms such as Codalab WASPSYN [61],
or institutional repositories such as Zenodo Cerebellar EGL ssSEM [46].
CREMI with 9 studies [9,23,25,56,57], SNEMI3D with 6 studies [19,
33-35], and MitoEM with 7 studies [15,25,38,43,44] exemplify this
open-science approach with well-documented public distributions.
Some datasets provided only partial annotations rather than exhaus-
tive ground truth, reflecting the immense human effort required for
complete manual annotation of large EM volumes.

3.1.4. Methodological impact

The impact of these datasets extended far beyond simple bench-
marking, fundamentally shaping methodological innovation in the
field. CREMI with 9 studies [9,23,25,56,57] established a precedent
for standardized evaluation of 3D neuron segmentation, creating a
common framework that facilitated innovations in graph-based ag-
glomeration techniques and hybrid CNN-Transformer architectures; see
Supplementary Material A, Table 1 for complete study list. The dataset’s
carefully controlled evaluation metrics drove consistent progress in
addressing challenging boundary detection problems in densely packed
neuropil.

SNEMI3D with 6 studies [19,33-37] similarly helped formalize
synaptic segmentation challenges and was instrumental in developing
focal losses and instance-aware networks. The dataset’s emphasis on
anisotropic resolution (6 x 6 x 30 nm) spurred innovations specif-
ically addressing z-direction discontinuities. Its standardized format
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for synaptic cleft segmentation provided a consistent benchmark for
precision in synapse detection algorithms.

FIB-25 [16,26,58], with its isotropic voxel sampling (8 x 8 x 8 nm),
enabled fine-scale modeling of Drosophila medulla spanning 52 x 53
x 65 pm’ and catalyzed advances in adversarial boundary detection
strategies. The dataset’s synaptic-resolution data proved critical for
improving detection accuracy in small neuronal structures typical of
invertebrate systems.

MitoEM [15,25,37,38,43-45] offered one of the most extensive vol-
umes specifically targeting mitochondria segmentation (1000 x 4096
x 4096 voxels), pushing the field toward sophisticated U-Net variants
with attention mechanisms. The dataset’s cross-species approach, en-
compassing both rat and human samples, encouraged the development
of architectures robust to biological variability.

EMNeuron [49], with its massive 22-billion-voxel scale and multi-
modal, multi-species architecture, supported multi-resolution frame-
works suitable for cross-species generalization, establishing new
paradigms for handling extreme-scale volumes.

The technological evolution evident in (Supplementary A Tables
1 and 2) demonstrates a clear progression from traditional EM ap-
proaches toward more sophisticated volume imaging techniques. This
shift parallels algorithmic developments, with newer acquisition meth-
ods enabling and demanding more sophisticated computational ap-
proaches. Automated sectioning technologies like ATUM-SEM featured
in 4 studies: [11,17,19,42] have proven particularly valuable for large-
scale 3D reconstructions. The emerging prominence of light microscopy
techniques 8 studies: [2,13,50-53,55,66] points toward future inte-
gration of live-tissue imaging with ultrastructural analysis. Special-
ized techniques such as multi-beam SEM 3 studies: [15,38,40] and
FIB-SEM 6 studies: [16,25,45,56,58,61] further illustrate the field’s
methodological diversification.

Collectively, these datasets highlight critical challenges in the field:
the scale of data demands increasingly sophisticated computational
infrastructure; high-resolution imaging substantially increases annota-
tion complexity; and dense annotations of specific structures require
significant expert effort. Despite these challenges, the continuous de-
velopment of specialized datasets has accelerated methodological in-
novation, enabling increasingly accurate and detailed neural circuit
mapping at ultrastructural scales.

3.2. Data processing pipeline

Effective transformation of raw EM data into analysis-ready formats
requires sophisticated preprocessing, data handling, and postprocessing
strategies. This section examines how studies address the unique chal-
lenges of brain EM data, from intensity normalization and resolution
management to specialized postprocessing techniques that preserve
neuronal topology and connectivity. (see Supplementary A Table 3:
Data Processing Methods)

3.2.1. Preprocessing

Effective preprocessing constitutes a critical step in enhancing the
quality and consistency of EM data prior to deep learning analy-
sis. Brain-specific preprocessing methodologies demonstrate significant
variation across studies, reflecting the diverse challenges inherent to
different imaging modalities and segmentation targets.

Normalization strategies represent a fundamental preprocessing
component implemented in numerous studies (Supplementary A Table
3). Xin et al. [56] implemented mean/standard deviation normal-
ization, while Heinrich et al. [9] and Shamsi et al. [66] applied
value normalization to standardize intensity distributions. Klinghoffer
et al. [53] utilized intensity normalization for axon tracing in SHIELD
PVGPe datasets, and Huang et al. [52] performed intensity normal-
ization before geometric transformations. More specialized approaches
included, Knowles-Barley et al. [39] implemented Contrast Limited
Adaptive Histogram Equalization (CLAHE) to enhance local contrast.
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Resolution adjustments were consistently applied to manage vol-
ume size and computational requirements. Multiple studies incorpo-
rated downsampling techniques. For example, Lin et al. [62] imple-
mented resolution downsampling for 3D neuronal nuclei segmentation,
while Guo et al. [17] employed patch division combined with down-
sampling for synapse reconstruction. Liu et al. [47] utilized 2x in-plane
downsampling to process large volumes, and Turner et al. [41] specifi-
cally applied 12x12x30 nm downsampling for membrane segmentation
in Kasthuri++. For anisotropic correction, trilinear interpolation was
used by Schmidt et al. [11], whereas the ROTO protocol was imple-
mented by Cordero Cervantes et al. [46] to normalize resolution across
dimensions.

Structural enhancement techniques were customized to specific
anatomical targets. Gornet et al. [7] implemented topology inflation
for neuronal arbor preservation, Januszewski et al. [63] utilized dis-
tance transforms, and Shi et al. [38] applied Line Segment Detector
(LSD) generation to enhance linear structures. Wang et al. [50] imple-
mented scale-space transformation for neural structure preservation in
BigNeuron datasets.

Several studies employed specialized preprocessing for data prepa-
ration: Troidl et al. [24] utilized point cloud sampling for point-based
neuron segmentation, Gornet et al. [7] applied topology inflation de-
signed to preserve neuronal connectivity, and Potocek et al. [1] em-
ployed sparse reconstruction techniques to process large datasets effi-
ciently.

Contrast enhancement was implemented through various methods,
with Plebani et al. [27] applying histogram equalization for unmyeli-
nated axon segmentation. Both Urakubo et al. [33] and Knowles-Barley
et al. [39] utilized CLAHE for multi-structure segmentation, while Wei
et al. [18] employed maximum intensity projection alongside block
division for 3D soma detection.

It is noteworthy that several studies [15,16,19,23,43] reported no
specific preprocessing steps, suggesting either reliance on high-quality
original data or the integration of normalization directly within their
neural network architectures.

3.2.2. Data handling techniques

Dataset distribution. Dataset partitioning strategies varied considerably
across studies, reflecting the diverse nature of EM datasets and seg-
mentation tasks. Standard train/validation/test splits were common but
implemented with different ratios: Shamsi et al. [66] employed a 75/25
split, Cheng et al. [34], Xu et al. [8] used 50/25/25 divisions, while Wei
et al. [65] implemented a 6:1:1 ratio. Volume-based partitioning proved
particularly suitable for 3D EM data, with Potocek et al. [1] utilizing 50
locations for training with 46 validation/test locations, and Liu et al.
[19] employing 80-100 training slices with 98-256 test slices.

Cross-dataset validation emerged as a robust approach for testing
generalization capabilities. Luo et al. [15] applied standard splits across
multiple datasets including MitoEM and EMNeuron, while Sun et al.
[23] utilized both CREMI and AC4 standard splits. Zhuo et al. [20]
trained on 100 slices and tested across different datasets, and Cheng
et al. [37] followed standard splits across SNEMI3D and MitoEM. Zhang
et al. [49] demonstrated extensive cross-dataset validation by training
on 13 datasets and testing on 3 others.

Several studies employed specialized partitioning strategies:
Schmidt et al. [11] used mouse data for training and human data
for testing, demonstrating cross-species generalization. Januszewski
et al. [63] trained on 29 small volumes plus 4 medium volumes to
evaluate scalability. Lin et al. [62] implemented a 5%/,/5%,/90% split to
emphasize testing performance. Matejek et al. [36] utilized 4 training,
3 validation, and 4 testing volumes across multiple datasets, while Liu
et al. [47] divided volumes of approximately 3300 x 2800 x 64 voxels
for training and 1900?x512 voxels for testing.

Studies employed two distinct approaches to increase training data
diversity: data expansion involves pre-generating and permanently stor-
ing transformed versions of original samples to enlarge the training
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dataset, while data augmentation applies transformations dynamically
during training without storing additional samples. This distinction
is crucial for understanding computational requirements and storage
needs across different methodological approaches. Some studies em-
ployed data expansion techniques to increase dataset size for train-
ing. Xiao et al. [42] pre-generated transformed versions using elastic
distortion, rotation, and flipping to expand training sets to 9000, 7000,
and 8000 samples respectively across different datasets, while Xin
et al. [56] generated 1 million patch pairs for feature registration
training. Cordero Cervantes et al. [46] implemented an 81/19 train/test
split after applying the ROTO protocol, while Troidl et al. [24] uti-
lized 15,000 training neurons and 2,000 testing neurons after point
cloud sampling. These expansion strategies aimed to provide sufficient
training data for complex deep learning models.

Data augmentation. To enhance generalizability and mitigate overfit-
ting, data augmentation was widely implemented across studies; see
Supplementary Material A, Table 3. Geometric transformations formed
the core of most augmentation strategies: rotation was employed in 7
studies [19,50,51,56,64]1, while flipping along various axes was sim-
ilarly common across 9 studies [19,27,46,50,61,67]. More complex
geometric transformations were also reported, with Schmidt et al. [11]
introducing flight axis rotation, Troidl et al. [24] applying multiple
geometric transformations tailored for point clouds, and Xin et al. [56]
utilizing affine transformations.

Intensity-based augmentations complemented geometric approa-
ches, with many studies implementing contrast adjustments, brightness
variations, and noise addition. Liu et al. [19] applied intensity scaling
alongside geometric transformations, while several studies, including Li
et al. [61], Xiao et al. [2], Shamsi et al. [66], and Wei et al. [18],
employed various intensity transformations. Additionally, Plebani et al.
[27] implemented jittering alongside flipping, and Lee et al. [67]
combined multiple transformations for neuron instance segmentation.

Specialized augmentation techniques addressed specific segmenta-
tion challenges: Gornet et al. [7] implemented simulated artifacts to
enhance robustness, Chen et al. [13] generated synthetic defects to im-
prove generalization, and Cheng et al. [34] applied Gaussian blur as a
form of augmentation for axon centerline detection. Cordero Cervantes
et al. [46] employed multiple transformations specifically tailored for
granule cell segmentation, while Guo et al. [17] combined various
transformations with patch-based approaches for synapse reconstruc-
tion.

Diverse augmentation strategies were employed across several stud-
ies. Dorkenwald et al. [48] applied random transformations for neu-
ronal membrane segmentation, Zhang et al. [49] implemented multi-
ple transformations for dense neuron and glia segmentation, and Lin
et al. [25] employed various transformations for multi-class organelle
segmentation.

A substantial number of studies—18 in total—reported no data aug-
mentation [1,15,38,43,55,63], suggesting either reliance on sufficient
training data or architectural innovations that reduced dependency on
data augmentation; see Supplementary Material A, Table 3 for complete
study list.

3.2.3. Postprocessing

Postprocessing methods were critical for translating raw segmenta-
tion outputs into biologically meaningful structures, with approaches
tailored to specific segmentation tasks and neural structures (Supple-
mentary A Table 3).

Watershed-based algorithms dominated the postprocessing land-
scape, appearing in various specialized forms across studies as pre-
sented in Supplementary Material A, Table 3. Eleven studies employed
watershed techniques to separate touching objects and refine instance
boundaries [12,15,25,33,37,58,62]. Specialized variants were also de-
veloped, with Lee et al. [67] introducing Mutex Watershed for dense
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voxel embeddings, Santurkar et al. [12] utilizing watershed with ag-
glomeration, and Cheng et al. [37] combining watershed variants with
DBSCAN clustering.

Connected component analysis and clustering approaches were fre-
quently implemented to identify distinct structures. For instance, Luo
et al. [15] combined connected components with watershed, while
Troidl et al. [24] and Guo et al. [17] employed hierarchical clus-
tering. Wei et al. [18] integrated connected components with DB-
SCAN clustering, and Chen et al. [40] utilized 3C clustering for neural
structure segmentation. Additionally, Plebani et al. [27] applied size
filtering alongside dilation techniques.

Skeletonization methods played a crucial role in neuron morphology
reconstruction. Wang et al. [50] implemented a backtracking algo-
rithm, while Cordero Cervantes et al. [46] applied skeleton extraction
for granule cell reconstruction. Zhao et al. [51] used skeleton ag-
gregation for 3D neuron segmentation, and both Shamsi et al. [66]
and Xu et al. [8] employed 3D skeletonization techniques. Specialized
approaches included the ST-LVF tracing method introduced by Huang
et al. [52] and the SmartTracing algorithm developed by Cheng et al.
[551.

Threshold-based refinement appeared in various forms. For exam-
ple, Liu et al. [57] and Heinrich et al. [9] applied simple thresholding,
while Berman et al. [59] implemented threshold-based refinement for
point-cloud neuron segmentation. Graph-based refinement was utilized
in several studies, with Chen et al. [13] employing BFS graph re-
construction, Dorkenwald et al. [48] using embedding aggregation,
and Zhang et al. [49] applying graph-based segmentation.

Specialized postprocessing techniques addressed unique challenges
in neuronal reconstruction. For instance, Schmidt et al. [11] employed
curvature integration for axon and spine neck reconstruction, and Gor-
net et al. [7] utilized the UltraTracer tool. Both Xiao et al. [42]
and Matejek et al. [36] applied lifted multicut for global consistency,
while Huang et al. [54] implemented tree pruning for point-cloud
neuron reconstruction. Additionally, Liu et al. [19] utilized block-wise
inference, and Zhuo et al. [20] implemented interactive refinement for
multi-task segmentation.

Advanced pipelines combined multiple techniques. Li et al. [61]
applied local maxima detection, Mai et al. [44] implemented sliding
window inference, and Urakubo et al. [33] combined binarization with
watershed. Further, Xin et al. [56] employed feature regularization,
and Wu [14] utilized probability map refinement. Consensus agglom-
eration for tissue-aware neuron segmentation was implemented by Liu
et al. [47], while Turner et al. [41] applied dilated segment matching
for membrane and nucleus segmentation.

Notably, several studies [1,16,21,35,44,53,64,68] reported no post-
processing, suggesting end-to-end approaches in which the model out-
put was considered sufficient without additional refinement.

This analysis reveals both methodological convergence around cer-
tain techniques and significant innovation in addressing specialized
challenges posed by different brain structures, imaging modalities, and
reconstruction tasks.

3.3. Deep learning architectures

The evolution of deep learning architectures for brain EM segmen-
tation reflects the unique computational challenges posed by neural
ultrastructure analysis. From traditional CNNs to emerging transformer
and foundation models, architectural choices must balance the de-
mands of multi-scale feature extraction, volumetric context integra-
tion, and topology preservation across diverse segmentation tasks. (see
Supplementary A Tables 4-6)

3.3.1. Core architectures

The analysis of brain (EM data has witnessed a consistent evolu-
tion of deep learning architectures, with a clear distinction emerging
between 2D, 3D, and hybrid approaches. CNNs remain dominant,
with U-Net variants widely adopted for both semantic and instance
segmentation tasks.
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Model Type Label Categories

Neuron Structure (45)

Supervised (50)

I Semantic (13)

2D (23)

Weakly-supervised (3)

! Both (7}

urisupervised (1)

CNN (44)

I Synaptic Structure (15)

Cell Components (14)

. Self-supervised (6)

I Fiybrid-(7)

Transformer(5)

Organelles (11)

Other Categories (17)
Foundation(4) 8

Key Insights: CNN dominates (73.3%) - 3 approaches preferred (61.7%) - Instance segmentation most common (66.7%) - Supervised learing prevalent (83 3%)
Label Distribution: Neuron structures primary focus (45 studies) - Synaptic structures significant (15 studies)  Cell Components: 14 studies (13.7%) « Organelles: 11 studies (10.8%) - Other Categories: 17 studies (16.7%)
Sample: N = 60 studies (Multi-target studies counted in multiple Iabel categories, totaling 102 label

Fig. 5. Sankey diagram illustrating the distribution of 60 deep learning studies on brain EM segmentation. The flow begins with the dimensionality of the
deep learning approach (2D or 3D), followed by the segmentation task type (semantic, instance, or both), the training strategy (supervised, self-supervised,
weakly-supervised, or unsupervised), the architecture type (CNN, Transformer, Hybrid, or Foundation Model), and finally ends with the targeted anatomical label
categories. The width of each connection reflects the number of studies using a given combination. Node labels include the number of studies at each level,
showing that 3D approaches (37 studies) are more prevalent than 2D (23 studies), with CNN-based architectures (44 studies) and supervised learning (50 studies)
being the most dominant choices. “Neuronal Structures” (45 studies) remains the most common segmentation target across all approaches.

2D vs. 3D approaches. 2D architectures remain foundational for brain
EM analysis, particularly for datasets with anisotropic resolution or
when computational resources are limited; see Supplementary Material
A, Tables 4-6 for complete details. Our review revealed that CNN-
based models, especially U-Net variants, dominate this category. Poto-
cek et al. [1] implemented FusionNet with residual U-Net and multi-
resolution blocks for cell membrane segmentation, emphasizing the
preservation of fine details in neuronal boundaries. Similarly, Turner
et al. [41] employed FusionNet with mean absolute error (MAE) loss
for membrane and nucleus segmentation on Kasthuri++, demonstrating
the value of fully residual networks for preserving edge continuity. Of
the 60 studies examined, 23 studies utilized 2D approaches [1,12,20,
27,42,46,56], highlighting their continued relevance despite advances
in 3D methodologies as shown in Fig. 5; see Supplementary Material A,
Tables 4-6 for complete study list.

3D architectures have gained significant traction due to their ability
to leverage volumetric context crucial for neuronal continuity. Among
the 60 studies analyzed, 37 studies—representing 62.7%—employed
3D approaches [9,11,15,19,23,25,43], reflecting the growing trend
toward volumetric analysis in neuronal reconstruction tasks; see Sup-
plementary Material A, Tables 4-6 for complete study list.

Among these, 3D U-Net implementations stand out as particularly
effective for handling z-axis discontinuities in anisotropic data. Hein-
rich et al. [9] utilized 3D U-Net for synaptic cleft segmentation on
CREMI, employing signed distance transform regression to precisely
delineate synaptic junctions. Xu et al. [8] applied 3D U-Net with cIDice
and L2 losses for axon tracing in SHIELD PVGPe, focusing on centerline
reconstruction to maintain structural continuity.

Most notably, recurrent 3D CNNs such as Flood-Filling Networks
(FFNs) have emerged as powerful tools for dense neuronal recon-
struction. Januszewski et al. [63] implemented FFNs with recursive
field-of-view movement and object mask channels, enabling voxelwise
log-loss optimization for dense neurite skeletonization. Similarly, Dong
et al. [16] utilized FFNs with FOV/POM feedback for neuronal struc-
ture segmentation in FIB-25, demonstrating the effectiveness of this
approach for tracing complex neuronal processes across large volumes.

Cnn, transformers, hybrid models and foundation models. CNNs remain
the dominant architecture class in brain EM segmentation, with 44 of

the 60 studies utilizing CNN implementations, as shown in Fig. 5. U-
Net variants were especially common, appearing in 22 studies [7-9,25,
27,61,62], highlighting their effectiveness for capturing multi-scale fea-
tures necessary for neuronal structure delineation; see Supplementary
Material A, Tables 4-6 for complete study list. Among CNN variants,
FusionNet was used for membrane segmentation by Potocek et al.
[1] and Quan et al. [60], while Flood-Filling Networks (FFNs) were
employed for recursive object tracking by 5 studies [10,16,33,63].

Graph-based approaches have emerged for capturing structural
connectivity. Zhao et al. [51] implemented a Dynamic Graph Con-
volutional Neural Network (DGCNN) for 3D neuron segmentation,
while Matejek et al. [36] employed a graph-based optimization with
CNN components for partitioning. Wei et al. [65] utilized a hybrid ap-
proach combining 2D Mask R-CNN with a GNN-based contextual graph
for inter-slice merging, modeling local features and global neuronal
topology.

Transformer-based architectures represent the frontier in brain EM
segmentation for multi-modal and large-scale datasets. Five studies [15,
21,24,34,35,37,44,65] implemented transformer approaches. Cheng
et al. [55] presented a 3D Vision Transformer (ViT) approach for
neuron segmentation in BigNeuron, utilizing deformable tubular trans-
fer in a self-supervised manner. This approach captures long-range
dependencies for maintaining neuronal continuity across volumes.

Foundation models have emerged as a promising direction for brain
EM segmentation, with four studies utilizing finetuned variants of
the Segment Anything Model (SAM). Three studies, including those
by Shi et al. [38], Zhuo et al. [20], and Archit et al. [69], employed
adaptations based on the original SAM architecture. Notably, Shi et al.
[38] introduced an innovative hybrid foundation model that integrates
3D Transformer components with U-Net and Mamba blocks to effec-
tively capture both spatial and sequential dependencies in volumetric
data. The uSAM approach, presented by Archit et al. [69], extends
SAM specifically for microscopy data, demonstrating improved perfor-
mance across different microscopy modalities, including EM, through
specialized fine-tuning and a napari plugin for interactive segmenta-
tion. Meanwhile, Shah et al. [21] leveraged the more recent SAM2
foundation model with its advanced memory encoder and attention sys-
tem, significantly improving segmentation consistency across EM slices,
particularly for complex structures like astrocytic processes. These
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A

Fig. 6. Difference between the core connections of U-net Ronneberger et al.
[701 (left) and FusionNet (right) Potocek et al. [1]. Note that FusionNet is a
fully residual network due to the summation-based skip connections and is a
much deeper network.

foundation model adaptations effectively address the data efficiency
challenges in brain EM segmentation, establishing a new paradigm
for applying large-scale pre-trained vision models to specialized neu-
roanatomical tasks.

Hybrid models combining CNNs and transformers have emerged for
brain EM segmentation, with 7 studies [23,34,35,43,45,57,65] employ-
ing such approaches. Luo et al. [15] introduced FragViT (Fragment
Vision Transformer), which fused fragment encoders with hierarchical
aggregation for mitochondria and neuron instance segmentation across
EMNeuron and MitoEM datasets. The Adaptive Template Transformer
proposed by Pan et al. [43] combined CNN and transformer layers with
transport-based optimization for mitochondria tracking in MitoEM,
modeling structural priors while maintaining flexibility. Shi et al. [38]
presented a hybrid foundation model integrating a 3D Transformer with
U-Net and Mamba blocks, demonstrating the potential of combining
attention mechanisms with state space models for capturing spatial and
sequential dependencies in volumetric data.

These architectural trends reflect the evolution toward models ca-
pable of capturing local features and global context, with hybrid ap-
proaches bridging the gap between CNN efficiency and transformer
expressivity. The emergence of foundation models suggests a shift
toward transfer learning from pre-trained models, addressing the data
efficiency challenges in brain EM segmentation.
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Fig. 7. Attention mechanism: (left) Scaled Dot-Product Attention. (right)
Multi-Head Attention consists of several attention layers running in parallel.
Source: Adapted from Vaswani et al. [71].

3.3.2. Specialized components

Skip connections and connectivity-preserving designs. Beyond core ar-
chitectural choices, specialized components tailored for brain-specific
challenges have proven crucial for successful EM segmentation. Our
analysis identified several key adaptations designed to address the
unique characteristics of brain ultrastructure (Supplementary A Tables
4-6).

Skip connections have evolved beyond their traditional U-Net im-
plementation to specifically address neuronal continuity challenges,
particularly in anisotropic datasets. Potocek et al. [1] proposed Fu-
sionNet by implemented enhanced skip connections to mitigate feature
loss in cell membrane segmentation as show in Fig. 6. Gornet et al.
[7]1 incorporated connectivity-preserving regularization into their U-
Net design for neuronal segmentation, enforcing topological constraints
through a specialized loss function targeting non-simple points. These
adaptations enable the preservation of thin neuronal processes often
lost in standard approaches, maintaining topological fidelity in complex
segmentations.

Attention modules. Attention mechanisms have proven essential in fo-
cusing learning capacity on ultrastructurally relevant targets. These
mechanisms, including self-attention (Fig. 7 left) and multi-head at-
tention (Fig. 7 right), enable models to selectively focus on relevant
features. Mai et al. [44] implemented a Reliable Pixel Aggregation
module (RPiA) and cross-attention in their Dual-branch Net for mito-
chondria segmentation across multiple datasets, while Chen et al. [40]
utilized SE-ResNext-50 with self-attention for neural structure segmen-
tation in various datasets. Additionally, Guo et al. [17] implemented
a region-focused Mask R-CNN with an SE-ResNet101 backbone for
synapse and post-synaptic density reconstruction in Mouse ATUM-SEM,
leveraging hierarchical clustering to identify synaptic regions within
the broader neuronal context.

Similarly, Thawakar et al. [45] incorporated attention gates into
their U-Net architecture for organelle instance segmentation, demon-
strating improved performance for fine subcellular structures. The in-
clusion of deformable attention by Cheng et al. [55] and appear-
ance prompt modulation by Sun et al. [23] demonstrated significant
promise for generalizing across morphologically diverse datasets, pro-
viding adaptability to varying neuronal morphologies.

Loss functions and optimization. Specialized loss functions have emerged
as critical components for addressing the unique challenges of brain
EM segmentation (Supplementary A Tables 4 and 5). Weighted binary
cross-entropy was widely adopted to address the severe class imbalance
inherent in organelle-rich datasets such as MitoEM and in axon
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segmentation tasks, as demonstrated by Casser et al. [22] and Plebani
etal. [27].

Boundary-aware losses have proven particularly effective for the
precise delineation of neuronal structures. For example, Heinrich et al.
[9] implemented signed distance transform regression on CREMI, while
Guo et al. [17] optimized synaptic cleft and membrane segmentation
using a combined focal and CIoU loss. Lin et al. [62] employed a hybrid
representation learning approach, combining binary cross-entropy with
mean squared error (MSE) for 3D neuronal nuclei segmentation in
NucMM-Z, enabling more precise localization of cell boundaries.

Self-supervised and contrastive losses have emerged as important
innovations for reducing annotation dependency. For instance, Cheng
et al. [55] utilized deformable tubular transfer, while Zhang et al. [49]
employed NT-Xent and decorrelation losses for contrastive learning in
dense neuron and glia segmentation on EMNeuron. Additionally, Cheng
et al. [37] adapted MAE pre-training for neural structure segmentation,
and Sun et al. [23] employed centroid contrastive and diversity losses
for neural connectivity reconstruction.

Advanced metrics like clDice, as used by Cheng et al. [34], Wei
et al. [65], and Xu et al. [8], have proven particularly effective at
mitigating topological errors in neuron reconstructions by focusing
optimization on preserving connectivity rather than simple pixel-wise
accuracy. These specialized metrics prioritize topological preservation,
which is especially critical in neuron tracing applications.

3.4. Segmentation tasks

Brain EM segmentation encompasses a spectrum of analytical tasks,
each with distinct computational requirements and biological signifi-
cance. This section examines how different segmentation paradigms—
from semantic boundary detection to complex multi-task instance
segmentation—address the diverse needs of neural circuit analysis and
subcellular structure characterization. (see Supplementary A Tables
4-6).

3.4.1. Semantic segmentation

Semantic segmentation forms the foundation of brain EM analysis,
enabling the delineation of key cellular structures without distinguish-
ing individual instances (Supplementary A Table 4). Out of 60 studies
analyzed in this review, 13 studies employed semantic segmentation
approaches, as shown in Fig. 5. This approach has been applied to three
primary targets: cell membranes, mitochondria, and neural structures.

Cell membrane delineation serves as the basis for establishing cel-
lular boundaries in neural tissue. Potocek et al. [1] and Turner et al.
[41] employed FusionNet architectures with different loss functions
(L2-norm and MAE, respectively), demonstrating effective preservation
of membrane continuity across datasets. Mitochondria segmentation,
critical for metabolic analysis, has been addressed through transformer-
enhanced networks by Mai et al. [44], who utilized cross-attention
mechanisms, while Casser et al. [22] implemented a lightweight U-
Net with BCE loss to handle class imbalance characteristic of organelle
segmentation.

Neural structure segmentation approaches varied based on morpho-
logical complexity. For example, Jiang et al. [64] employed ResNet-
50 with ASPP and focal loss for cell body delineation, while Wang
et al. [50] utilized 3D CNNs with specialized boundary components
for dendritic processes. The diverse architectural choices reflect the
scale-dependent nature of semantic segmentation tasks in EM data, with
membrane segmentation requiring fine boundary precision and neural
structure segmentation demanding multi-scale context integration.

Cross-architectural performance analysis reveals that iterative re-
finement approaches, such as the I-CNN proposed by Wu [14], and
foundation model adaptations, like the modified SAM introduced by
Shah et al. [21], demonstrate particular promise for generalizing across
datasets. This suggests that semantic segmentation benefits from pro-
gressive feature refinement rather than single-pass inference. The in-
tegration of specialized morphological priors, as demonstrated in the
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VoxResNet approach by Huang et al. [52], which combines region
growing with skeletonization, has proven especially effective for main-
taining structural continuity in sparsely annotated volumes.

3.4.2. Instance segmentation

Instance segmentation in brain EM analysis requires the precise
delineation of individual cellular components within densely packed
neural tissue (Supplementary A Table 5). As shown in Fig. 5, this
approach dominates the methodological landscape, with 40 out of the
60 studies analyzed in this review employing instance segmentation
techniques.

For synapse instance segmentation on SNEMI3D, Liu et al. [19]
implemented a 3D network based on ResNet50 with Feature Pyramid
Network (FPN), incorporating a region proposal network and instance
segmentation branch. For neuron reconstruction in AC3/AC4, Lee et al.
[67] employed Residual Symmetric U-Net with embedding loss and
Mutex Watershed to separate neurons.

Flood-Filling Networks (FFN) have proven effective for neuron seg-
mentation. Januszewski et al. [63] utilized recursive mask extension for
neurite skeletonization, while Dong et al. [16] extended this approach
with 3D fields-of-view and memory channels for object instance predic-
tions in FIB-25. For axon instance segmentation in AxonEM, Wei et al.
[10] combined U-Net with FFN, employing affinity prediction to trace
axonal morphologies.

Point-based and graph-based methods address topological structure
preservation. Berman et al. [59] employed CurveNet for neuron seg-
mentation in CREMI, utilizing curve-feature extraction for structural
continuity. Several studies implemented graph network architectures
for neuronal reconstruction, including Zhao et al. [51], Santurkar et al.
[12], and Huang et al. [54]; notably, the Contextual Graph Model
proposed by Santurkar et al. [12] used message passing for 2D-to-3D
correspondence in nuclei segmentation.

For domain transfer, the Point Affinity Transformer for neuron
segmentation in FlyWire, MANC, and Hemibrain, introduced by Troidl
et al. [24], combined BCE with contrastive loss for point affinity
prediction. Additionally, the modified SAM-Med3D for DendriteSAM
developed by Zhuo et al. [20] incorporated Fact fine-tuning and a 3D
LSD Encoder to adapt foundation models to EM data.

3.4.3. Subcellular structure segmentation

Synapses and vesicles. Subcellular structure segmentation represents a
challenging aspect of brain EM analysis, requiring precise delineation
at nanometer scale. For synaptic cleft segmentation on CREMI and
FAFB, Heinrich et al. [9] employed 3D U-Net with signed distance
transform regression, enabling geometric characterization of synaptic
junctions. Li et al. [61] utilized a two-step detection network based
on 3D U-Net for pre/post-synapse point annotations in WASPSYN to
identify synaptic partners across synaptic clefts. Guo et al. [17] im-
plemented region-focused Mask R-CNN for synapse and PSD recon-
struction in Mouse ATUM-SEM with hierarchical clustering to identify
synaptic regions. Matejek et al. [26] implemented compositional Con-
vNets with rules-based composition of marginal features for synapse
detection and connectivity analysis across brain regions, providing a
structured approach to synapse connectivity mapping.

Dendritic spines. Dendritic spine analysis presents challenges due to
complex morphology. Schmidt et al. [11] presented a specialized ap-
proach for axon and spine neck reconstruction on SBEM/
multiSEM datasets, implementing Bishop frame projection with
membrane-avoiding flight mechanisms to trace thin connections of
dendritic spines. Gonda et al. [35] utilized a vision foundation model
with transformer architecture for dendrite and spine segmentation
on DendriteSAM, implementing a ViT encoder with mask decoder to
capture distinctive morphological features of dendritic spines. This ap-
proach outperformed traditional 2D methods for spine segmentation in
rat hippocampus, demonstrating the value of transformer architectures
for complex morphological features.
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Mitochondria tracking. Mitochondrial tracking across image volumes
has emerged as an important subcellular segmentation task. FragViT
by Luo et al. [15] and the Adaptive Template Transformer by Pan et al.
[43] employed hierarchical aggregation and structural template learn-
ing approaches to track mitochondria across MitoEM datasets. Their
hierarchical attention strategies and template learning approaches ef-
fectively captured diverse mitochondrial morphologies across brain
regions, enabling consistent mapping across large-scale datasets.

3.4.4. Multi-task segmentation

The simultaneous segmentation of multiple cellular and subcellular
structures has gained traction as datasets and models have matured.
As highlighted in Supplementary A Table 6, several approaches have
demonstrated success in this challenging domain:

FragViT, proposed by Luo et al. [15], simultaneously segmented
mitochondria and neurons in the MitoEM and EMNeuron datasets by
utilizing fragment encoders with affinity heads and hierarchical frag-
ment aggregation. This approach maintained distinct instance bound-
aries while sharing feature extraction layers. The Adaptive Template
Transformer introduced by Pan et al. [43] combined structural template
learning with optimal transport regularization for 3D mitochondria
segmentation across MitoEM, Lucchi, and NucMM datasets. It effec-
tively modeled shape priors while adapting to biological variability.
RC-SPCNet, developed by Xiao et al. [42] for neuronal boundary seg-
mentation in the ISBI EM Challenge, integrated deep residual net-
works with subpixel convolution and lifted multicut post-processing to
achieve accurate boundary delineation while preserving neuronal con-
nectivity. The Multi-CNN architecture presented by Urakubo et al. [33]
fused 2D convolutional neural networks with 3D flood-filling networks
(FFNs) for the segmentation of neurons, mitochondria, and synapses
in the SNEMI3D dataset, demonstrating the effectiveness of specialized
components for different cellular structures within a unified frame-
work. U-Net variants proposed by Quan et al. [60] for multi-structure
segmentation in the ISBI and Zebrafish EM datasets employed hybrid-
representation learning using mixed 2D/3D convolutions. This design
enabled effective handling of anisotropic data while segmenting multi-
ple subcellular structures simultaneously. The hybrid encoder-decoder
architecture introduced by Thawakar et al. [45] for 3D mitochondria
segmentation in MitoEM and Lucchi incorporated split spatio-temporal
attention (SST) and deformable convolutions to capture the complex
morphological features of mitochondria across different datasets.

These multi-task approaches demonstrate the increasing sophisti-
cation of deep learning models for brain EM segmentation, moving
beyond single-structure analysis toward a more holistic volumetric
understanding of neural ultrastructure.

3.4.5. Training paradigms

The effectiveness of deep learning models for brain EM segmenta-
tion is highly dependent on the training approaches employed (Sup-
plementary A Tables 4 and 5). Our analysis of 60 studies revealed
four distinct training paradigms with varying degrees of representation:
supervised learning (50 studies), self-supervised learning (6 studies),
weakly supervised learning (3 studies), and unsupervised learning (1
study), as illustrated in Fig. 5.

Supervised learning methods, which require expert annotations,
dominated the methodological landscape, comprising 83% of the re-
viewed studies [9,20,25,43,60,61,67]. This prevalence is exemplified
by Heinrich et al. [9] and Quan et al. [60] in their work on synap-
tic cleft and multiple structure segmentation, respectively. These ap-
proaches consistently demonstrate high accuracy but are inherently
constrained by the limited availability of labeled data—a significant
challenge in EM analysis due to the labor-intensive nature of expert
annotation; see Supplementary Material A, Tables 4-6 for complete
study list.

Self-supervised methods, accounting for approximately 10% of stud-
ies [8,37,48,49,53,66], have emerged as promising alternatives to re-
duce annotation dependency. For example, Xu et al. [8] employed a
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self-supervised 3D U-Net architecture for axon tracing in the SHIELD
PVGPe dataset, while Cheng et al. [37] utilized MAE pre-training
techniques for neural structure segmentation in SNEMI3D and Mi-
toEM datasets. Notably, the contrastive learning approach introduced
by Zhang et al. [49] for neuron and glia segmentation in EMNeuron em-
ployed NT-Xent and decorrelation losses to facilitate effective learning
with minimal labeled data.

Weakly supervised approaches, representing 5% of the reviewed
studies [8,37,48,49,53,66], effectively bridge the methodological gap
between fully supervised and self-supervised methods. For instance,
Huang et al. [52] utilized region growing with skeleton methods for
3D neuron reconstruction in fMOST and BigNeuron datasets, while
Klinghoffer et al. [53] implemented similar techniques for 3D axon
segmentation in SHIELD PVGPe. These approaches strategically
leverage sparse annotations, which is particularly valuable in large-
scale datasets where dense labeling is prohibitively expensive or time-
consuming.

Semi-supervised learning, though less prevalent, demonstrates con-
siderable promise as evidenced by the dual-branch network for mito-
chondria segmentation proposed by Mai et al. [44]. This approach in-
corporated prototype consistency alongside conventional cross-entropy
loss mechanisms to efficiently utilize both labeled and unlabeled data
resources. Unsupervised learning remains the least explored paradigm,
with only Xin et al. [56] employing fully unsupervised techniques for
EM segmentation.

The distribution of training paradigms reflects the inherent trade-off
between segmentation accuracy and annotation efficiency in brain EM
analysis. While supervised approaches currently dominate due to their
superior performance metrics, the growing representation of alterna-
tive training paradigms suggests an evolving methodological landscape
increasingly oriented toward annotation efficiency and generalizability.

3.4.6. Performance trends

Analysis across studies reveals key patterns (Supplementary A Ta-
ble 7). 3D architectures consistently outperform two-dimensional ap-
proaches in anisotropic volumes, as demonstrated by the FFN imple-
mentation of Dong et al. [16] in FIB-25, which achieved superior con-
tinuity in neurite tracking compared to slice-based approaches. Trans-
former models enhance multi-task generalization capabilities. FragViT
by Luo et al. [15] and the Point Affinity Transformer by Troidl et al.
[24] both demonstrated superior performance in joint segmentation
tasks and cross-dataset generalization. These models leverage their
capacity for modeling long-range dependencies to capture structural
relationships. Specialized loss functions also improve segmentation
quality. Topological losses such as clDice, as used by Cheng et al.
[34], Wei et al. [65], and Xu et al. [8], enhance neuron topology preser-
vation compared to standard pixel-wise metrics, focusing optimization
on connectivity patterns that are crucial for circuit reconstruction.
Hybrid architectures that combine multiple components—such as the
integration of SAM with 3D watershed algorithms by Thawakar et al.
[45] and the modified SAM-Med3D by Zhuo et al. [20]—represent a
promising direction for leveraging pre-trained foundation models while
adapting to the challenges of brain EM data.

3.5. Evaluation and performance

Rigorous evaluation of brain EM segmentation methods requires
metrics and validation strategies that capture both computational ac-
curacy and biological relevance. Our analysis of performance trends
across studies reveals how evaluation approaches have evolved to
address the unique challenges of neural ultrastructure analysis, from
traditional overlap metrics to connectivity-preserving measures. (see
Supplementary A Table 7: Performance Evaluation and Reproducibil-
ity)
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3.5.1. Validation strategies

Validation approaches for brain EM segmentation studies reveal
methodological considerations specific to neural ultrastructure analysis
(Supplementary A Table 7). Test set evaluation dominates, with studies
employing held-out volumes or slices for performance assessment.

Rigorous studies implement cross-validation alongside test set eval-
uation to ensure generalizability. Liu et al. [57] employed cross-
validation for boundary prediction in SEM and CREMI datasets, while
Knowles-Barley et al. [39] utilized it for validating membrane segmen-
tation across diverse brain regions. Hold-out validation was common in
studies with limited data availability, as demonstrated in [53,64,65].

Expert validation through manual gold standards represents another
critical approach. Huang et al. [52] validated neuron reconstruction
against manual annotations, achieving average precision/recall above
0.99 in BigNeuron datasets. Similarly, Liu et al. [47] employed manual
proofreading to validate axonal connectivity, reporting 86.61% correct
edge identification with 98.10% path length coverage. Zhuo et al. [20]
utilized expert validation to assess mask quality in adapting foundation
models to brain EM data.

Out-of-distribution testing emerged as a rigorous validation ap-
proach for assessing generalization capabilities. Zhang et al. [49] eval-
uated contrastive learning methods across different datasets (VEM4,
Basil, Harris), demonstrating robust performance (VOI=0.772-1.022)
despite substantial domain shifts. This approach identified models ca-
pable of generalizing across brain regions and imaging conditions—a
critical consideration for practical deployment.

3.5.2. Performance metrics and results

Performance evaluation in brain EM segmentation employs task-
specific metrics designed to capture different aspects of segmenta-
tion quality (Supplementary A Table 7). Semantic segmentation relies
primarily on overlap metrics (Dice/IoU/Jaccard), instance segmen-
tation emphasizes topological correctness through VOI and ARAND,
while specialized tasks employ connectivity-preserving measures such
as Expected Run Length (ERL) and skeleton-focused metrics.

Membrane and Cell Segmentation achieved the highest performance
levels. Xiao et al. [42] reported Rand scores up to 0.9878 on ISBI
challenge data, while Jiang et al. [64] achieved IoU values of 0.9163 for
neural cell bodies and 0.9883 for nuclei. These high scores reflect the
maturity of membrane segmentation methods and the distinct signal
characteristics of cell boundaries.

Mitochondria Segmentation emerged as another high-performing
domain. Luo et al. [15], Pan et al. [43], and Mai et al. [44] achieved
Jaccard scores between 85.0-90.5% and DSC between 91.9-95.0%
on Lucchi datasets. Performance remained strong but decreased on
more complex MitoEM datasets, with Luo et al. [15] and Pan et al.
[43] reporting AP75 values of 0.679-0.958 for instance segmentation
and AP scores of 76.9-78.2 (rat) and 67.5-68.2 (human), highlighting
dataset complexity impact.

Neuron Instance Segmentation presented greater challenges due to
complex branching structures. On CREMI datasets, composite scoring
combining VOI and ARAND [9,25,58] revealed VOI ranging from 0.031
to 1.118 and ARAND from 0.008 to 0.117 across studies [23,40]. Troidl
et al. [24] demonstrated strong performance on diverse datasets (Fly-
Wire: VOI=0.17, ARE=0.04; MANC: VOI=0.20, ARE=0.05), while
Matejek et al. [36] achieved VOI improvements of 20.9-28.7% on PNI
datasets through recurrent network architectures.

Synapse Detection faced challenges due to small size and sparse
distribution. Li et al. [61] reported F1 scores between 0.408 (baseline)
and 0.616 (best performer) in the WASPSYN challenge, employing
specialized synapse matching criteria with biologically relevant dis-
tance thresholds (88/52 nm). Shi et al. [38] achieved Dice=0.834 and
mAP=0.865 on CREMI synaptic data, though these lower scores reflect
the inherent difficulty in identifying small synaptic structures within
complex neuropil.
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Axon Tracing performance was evaluated through connectivity-
preserving metrics that assess biological utility. Wei et al. [10] reported
ERL values of 9.6-18.5 pm for AxonEM-H and 38.5 pm for AxonEM-
M, measuring distance along neuronal processes before encountering
segmentation errors. Skeleton-focused measures showed varied perfor-
mance, with Zhao et al. [51] and Huang et al. [52] reporting ESA val-
ues of 1.43+0.29 and 1.28+0.30, respectively. Additionally, topology-
preserving metrics such as clDice and p-Dice, employed by Shamsi
et al. [66] and Xu et al. [8], prioritized connectivity preservation over
boundary precision.

Denoising and Reconstruction tasks utilized image quality metrics,
with Potocek et al. [1] and Cheng et al. [34] reporting PSNR and SSIM
values in denoising contexts, though these appeared less frequently in
the literature.

Clear performance patterns emerged: subcellular organelles like
mitochondria achieved higher accuracy than branching structures like
axons; sparse structures like synapses presented persistent challenges;
and performance consistently decreased with dataset complexity. Direct
comparison between studies remains challenging due to differences in
datasets, metrics, and evaluation protocols, underscoring the need for
standardized benchmarking approaches in brain EM segmentation.

3.6. Practical considerations

The transition from research prototypes to practical deployment
in neuroscience workflows involves critical considerations of compu-
tational scalability, methodological reproducibility, and cross-domain
generalization. This section examines how studies address these real-
world constraints and the strategies employed to make brain EM seg-
mentation methods accessible and reliable for broader scientific ap-
plication. (see Supplementary Table 7: Performance Evaluation and
Reproducibility)

3.6.1. Scalability

Processing large EM volumes presents computational challenges,
with studies employing diverse hardware configurations and algorith-
mic optimizations for scalability (Supplementary A Table 7). Hardware
requirements scale with dataset complexity and model sophistication.
High-end GPUs dominate, with RTX 3090, V100, and A100 models
commonly employed. Shi et al. [38] utilized 8 x A800 GPUs for multi-
task segmentation, while Zhuo et al. [20] leveraged A100 (40 GB)
for foundation model adaptation. For large volumes, distributed sys-
tems become necessary: Januszewski et al. [63] employed 32 x K40
GPUs, Heinrich et al. [9] utilized 48 GPUs for CREMI challenge per-
formance, and Wei et al. [10] required 32 x A100 GPUs for axon
reconstruction. The most extreme case was Dong et al. [16], utilizing
2048 KNL nodes for FIB-25 segmentation.

Processing efficiency varies across approaches. Potocek et al. [1] re-
ported inference times of 4-5s per image on Quadro P5000, while Gor-
net et al. [7] achieved throughput of 348.8+1.9 gigavoxels/hour on
GTX 1080 Ti. The approach proposed by Funke et al. [58] required 2.6 s
per megavoxel, while Matejek et al. [26] reported a processing rate of
1 million voxels per second. These metrics provide useful information
for estimating computational requirements.

Several studies reported computational optimizations. Schmidt et al.
[11] achieved a 5-80 x speedup through membrane-avoiding flight
techniques. Xin et al. [56] reduced feature extraction time from 7.04
to 1.52 ms while simultaneously improving performance. Block-based
processing emerged as a common strategy, with Potocek et al. [1], Liu
etal. [19], and Liu et al. [47] implementing sliding window approaches
to address memory constraints.
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3.6.2. Reproducibility

Code availability varied across studies (Supplementary A Tables 7
and 8). Approximately 40% (24 out of 60) provided public GitHub
repositories, including studies such as Januszewski et al. [63], Plebani
et al. [27], Cordero Cervantes et al. [46], Xiao et al. [42], Urakubo et al.
[33], Lee et al. [67], Funke et al. [58], Zhuo et al. [20], Dorkenwald
et al. [48], Zhang et al. [49], and Lin et al. [25]. Several studies also
provided access through specialized platforms, for example, Lin et al.
[62] via a custom website, Wei et al. [10] through a project website,
and Knowles-Barley et al. [39] via a dedicated portal.

To provide a more granular analysis of the state of reproducibility,
we conducted a structured audit of each available code repository,
evaluating it based on three key criteria: the provision of pretrained
model weights, the quality of documentation and instructions, and
the overall completeness of the package for reproducing the paper’s
results. Our findings reveal a wide spectrum of reproducibility, from
‘Full Reproduction Packages’ that include pretrained models and clear
instructions e.g., Plebani et al. [27], Chen et al. [13], Heinrich et al.
[9], Dorkenwald et al. [48], and Archit et al. [69] to repositories
that provide only source code with minimal guidance e.g., Liu et al.
[19], Guo et al. [17], and Zhuo et al. [20]. A detailed breakdown of this
audit for each study is presented in Supplementary A Table 8, which
categorizes each repository to provide a clear overview of its utility for
other researchers.

The depth of implementation details varied significantly. Most
repositories included model definitions and training scripts, but fewer
provided pretrained weights or complete pipelines. Comprehensive
examples include the implementation of lifted multicut by Xiao et al.
[42], the end-to-end pipeline for neuron instance segmentation by
Funke et al. [58], and the adaptation of foundation models by Zhuo
et al. [20].

Domain-specific reproducibility challenges emerged due to the
use of specialized EM datasets. Many studies employed proprietary
datasets, complicating replication efforts, while others relied on pre-
processing or specialized data formats that were not fully documented.
The most reproducible approaches, presented by Cordero Cervantes
et al. [46], Xiao et al. [42], and Heinrich et al. [9], provided thorough
documentation of preprocessing steps and model implementation.

Several studies highlighted the impact of training methodology on
reproducibility. For example, Luo et al. [15] reported performance met-
rics for 160k training iterations using 2xXRTX 3090 GPUs. Huang et al.
[52] detailed the importance of hyperparameter selection, and Urakubo
et al. [33] specified hardware configurations alongside public code.

3.6.3. Domain adaptation

Domain adaptation emerges as a critical consideration for gener-
alizing segmentation approaches across datasets, brain regions, and
species—a persistent challenge in brain EM given the variability in tis-
sue preparation, imaging protocols, and neuroanatomy (Supplementary
A Table 7).

Cross-species adaptation has demonstrated promising results. For
example, Schmidt et al. [11] trained on mouse SBEM data and tested
on human multiSEM datasets, reducing split errors from 65 to 28 mm.
Chen et al. [13] employed synthetic defect generation for cross-species
neuron morphology reconstruction. In another example, Zhang et al.
[49] trained on 13 datasets and transferred to three out-of-distribution
test sets, achieving VOI values of 0.772-1.022 and ARE of 0.102-0.153
through contrastive learning.

Foundation model adaptation offers an approach for handling do-
main variation. Zhuo et al. [20] adapted the SAM model to brain
EM data, reporting improvements of approximately 0.1 and 0.3 in
quality over standard SAM and Micro SAM, respectively. Cheng et al.
[55] employed deformable tubular transfer in self-supervised learning
contexts, while Shah et al. [21] utilized bi-directional self-prompting to
achieve robust performance across mouse and human datasets.
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Table 2

Summary statistics for key performance metrics (N = 46 experiments)
Metric N Mean SD Min Max Q50
Dice 15 0.896 0.132 0.549 0.974 0.948
Jaccard 11 0.903 0.033 0.846 0.947 0.905
AP 8 0.820 0.160 0.536 0.973 0.845
F1 7 0.880 0.083 0.717 0.973 0.880
Precision 10 0.945 0.068 0.790 0.998 0.978
Recall 10 0.919 0.108 0.632 0.996 0.951

Transfer learning strategies also appear in several studies. For in-
stance, Liu et al. [19] leveraged detection models pretrained on nat-
ural images for synaptic segmentation, achieving AP mask values of
53.6-55.4% across datasets. Li et al. [61] applied transfer learning
for pre- and post-synapse identification in the WASPSYN challenge,
and Huang et al. [52] utilized transfer learning for neuron reconstruc-
tion across BigNeuron datasets.

Self-supervised and unsupervised domain adaptation techniques fur-
ther reduce annotation requirements. Xin et al. [56] employed an un-
supervised triplet margin loss for patch registration, improving CREMI
Dice scores from 0.896 to 0.901 while reducing computational require-
ments. Additionally, Chen et al. [40] utilized self-attention mechanisms
for domain adaptation across CREMI, Kasthuri, and Octopus datasets.

Collectively, these approaches address a fundamental challenge in
brain EM analysis: variability across imaging conditions, brain re-
gions, and species. Successful methods combine architectural innova-
tions with specialized training regimes to achieve generalization, a ca-
pability essential for practical deployment across diverse neuroscience
applications.

3.7. Meta-analysis of segmentation methods

To address the synthesis of cross-dataset performance trends, we
conducted a comprehensive meta-analysis of segmentation methods.
While our survey encompassed 60 studies across 28 datasets, stringent
selection criteria yielded 27 studies (46 experiments) across 10 datasets
for quantitative analysis. Selection criteria included: (i) clearly reported
test sample sizes, (ii) evaluation on datasets used by >2 studies, and (iii)
reporting of at least one standardized metric (Dice, Jaccard, AP, F1,
Precision, Recall, VOI, ARAND, or Rand). (see Supplementary B Tables
1-6 and Figure 1-10).

Normalized performance overview. Table 2 presents normalized sum-
mary statistics across all evaluated metrics. The analysis reveals consis-
tently high performance for overlap-based metrics (Dice: 0.896 + 0.132,
Jaccard: 0.903 + 0.033) with greater variability in instance-based
metrics (AP: 0.820 + 0.160).

Unified benchmark of top methods. Table 3 presents the unified bench-
mark of top-performing methods ranked by composite score. Founda-
tion models and hybrid architectures dominate the top positions, with
the 3D Transformer + U-Net achieving the highest composite score
(0.954) with consistent performance across 5 datasets.

Method category performance analysis. Fig. 8 illustrates performance
differences across method categories. Statistical analysis reveals signifi-
cant differences only for AP scores (F=19.03,p = 0.008), while Dice and
Jaccard show no significant differences between categories (p > 0.4).
Effect size analysis indicates large improvements when comparing CNN
to foundation models (Cohen’s d=-1.28 for Dice, —6.44 for AP).

Cross-dataset generalization. Critical to assessing method robustness,
only 26% (12/46) of experiments evaluated methods on multiple
datasets. The 3D Transformer + U-Net demonstrated the best gener-
alization with coefficient of variation (CV) < 0.033 across 5 datasets.
Methods with cross-dataset validation showed superior consistency
(mean CV: 0.032) compared to single-dataset evaluations.
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Table 3
Top 10 brain EM segmentation methods ranked by composite performance
score in descending order, showing performance metrics and code availability.

Method Cat. Dice Jacc. AP Comp. DS Code
3D Trans.+U-Net [38] Fnd. 0.955 - 0951 0954 5 No
DDeep3M+ [2] CNN - 0.947 - 0947 1 Yes
Hyb. enc-dec [45] Hyb. 0.962 0.913 - 0938 2 Yes
U-Net+FFN [33] CNN 0.950 0.910 - 0930 1 Yes
Dual-br. attn Mai et al. [44] Trn. 0.938 0.884 - 0911 2 No
UTR [56] CNN 0.901 - - 0901 1 No
Mod. U-Net [22] CNN - 0.893 - 0.893 2  Yes
SAM2 [21] Fnd. 0.924 0.861 - 0.893 1 Yes
ATFormer [43] Hyb. 0.948 0.902 0.782 0.854 3 No
FragViT [15] Trn. 0.950 0.905 0.769 0.848 3 No

Methods ranked by composite score in descending order. Fnd.: Foundation, Hyb.:
Hybrid, Trn.: Transformer, Jacc.: Jaccard, Comp.: Composite Score, DS: Datasets, enc-
dec: encoder—decoder, attn: attention, br.: branch, Mod.: Modified.

Multi-Metric Comparison by Method Category
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Fig. 8. Multi-metric performance comparison across method categories. Foun-
dation models and hybrid approaches show superior performance across most
metrics. See Supplementary Material B for detailed statistical analysis.

Key findings. Our meta-analysis reveals: (1) Foundation models out-
perform traditional CNNs by 13%-35% on average metrics; (2) Code
availability remains limited (54% overall), with CNNs showing highest
availability (67%); (3) Dataset complexity significantly impacts per-
formance, with specialized datasets (e.g., BigNeuron) showing 40%
lower scores; (4) Strong metric correlations exist for overlap measures
(Dice-Jaccard: r=0.89) but weak correlations with instance metrics
(r<0.4).

For detailed analyses including effect sizes, dataset-specific per-
formance, and additional visualizations, see Supplementary Material
B.

4. Discussion

Our review of 60 studies, combined with quantitative meta-analysis
of 27 studies (46 experiments) across 10 datasets, reveals a field in
rapid transition from traditional CNN-based approaches toward sophis-
ticated hybrid and foundation model architectures. The evolution of
brain EM segmentation reflects both advancing deep learning capa-
bilities and growing understanding of the unique challenges posed by
neuroanatomical data at nanometer resolution.

4.1. Performance landscape and architectural evolution

Our meta-analysis provides the first extensive benchmark com-
parison across brain EM segmentation methods, revealing significant
performance disparities between architectural approaches. Foundation
models and hybrid architectures demonstrate clear superiority, with
the 3D Transformer + U-Net achieving the highest composite score
(0.954) across five datasets. Statistical analysis confirms that while
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overlap-based metrics (Dice, Jaccard) show no significant differences
between method categories, instance-based metrics reveal substantial
advantages for foundation models, with effect sizes reaching Cohen’s d
= —6.44 for Average Precision when compared to traditional CNNs.

The dominance of U-Net variants (appearing in 42% of studies)
reflects their architectural advantages for maintaining spatial precision
while capturing multi-scale features. However, the most successful
implementations have moved far beyond the original architecture,
incorporating residual connections, attention mechanisms, and special-
ized 3D optimizations. The emergence of transformer-based approaches
represents the most significant recent innovation, with these meth-
ods demonstrating superior ability to capture long-range dependencies
critical for preserving neural connectivity patterns.

Our analysis reveals that only 26% of experiments evaluated meth-
ods on multiple datasets, highlighting a critical gap in cross-dataset
validation. Methods with cross-dataset evaluation showed superior con-
sistency (mean coefficient of variation: 0.032) compared to single-
dataset approaches, underscoring the importance of robust generaliza-
tion testing. The 3D Transformer + U-Net demonstrated exceptional
generalization capability with coefficient of variation < 0.033 across
five datasets.

Flood-filling networks have emerged as particularly effective for
neurite segmentation through their iterative field-of-view approach,
while topology-preserving loss functions have shown substantial im-
provements in preserving thin axonal structures. Multi-representation
approaches that transition between voxel, skeleton, and graph rep-
resentations effectively capture the inherent network properties of
neural structures. Foundation model adaptation techniques, as demon-
strated in recent studies, reduce annotation requirements while im-
proving cross-dataset generalization—a critical advancement given the
annotation burden inherent in EM data.

4.2. Dataset characteristics and evaluation evolution

The dataset landscape encompasses 28 distinct datasets across mul-
tiple species and brain regions, creating both opportunities and chal-
lenges for method development. Our meta-analysis reveals substantial
performance variations across datasets, with specialized datasets like
BigNeuron showing 40% lower scores compared to standardized bench-
marks. Publicly available datasets (MitoEM, CREMI, SNEMI3D, Lucchi)
have enabled more consistent benchmarking, particularly for mito-
chondria segmentation where current state-of-the-art achieves Jaccard
scores of 87.2-90.5%.

A critical finding from our analysis is the evolution of evaluation
metrics beyond pixel-wise accuracy toward topology-aware measures.
Traditional metrics (Dice, Jaccard) show strong correlation (r=0.89)
but weak correlation with instance-based metrics (r<0.4), highlighting
their limitation in capturing biological significance. The emergence of
topology-preserving metrics (clDice, ERL) represents a paradigm shift
toward evaluation frameworks that prioritize structural continuity and
connectivity preservation over pixel-wise accuracy.

Dataset fragmentation reflects the diversity of research questions
in connectomics but complicates direct method comparison. Most EM
datasets exhibit substantial anisotropy with lower z-axis resolution,
and while several specialized architectures have addressed this chal-
lenge, no definitive solution has emerged. The median training dataset
contains only a few hundred annotated slices, insufficient for fully
capturing neuroanatomical complexity, driving the recent focus on
self-supervised and foundation model approaches.

4.3. Visual platform capabilities and segmentation examples

Our review reveals that the advancement of brain EM segmenta-
tion has been significantly enabled by sophisticated visualization plat-
forms that integrate computer graphics techniques with neuroscience
workflows. Modern platforms such as WEBKNOSSOS Boergens et al.
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[72] demonstrate the critical intersection of high-performance comput-
ing, 3D visualization, and collaborative data analysis in contemporary
connectomics research.

Fig. 9 illustrates the advanced capabilities of modern brain EM seg-
mentation platforms. The specialized streaming and rendering technol-
ogy (Fig. 9a) enables real-time browsing of multi-terabyte EM datasets
through standard web browsers, eliminating computational barriers for
collaborative research. GPU-accelerated 3D mesh visualization (Fig.
9b) allows researchers to explore segmented neural structures in three
dimensions, with direct export capabilities to professional rendering
software.

Optimized interfaces for Volume EM data navigation (Fig. 9c)
demonstrate how raw EM datasets can be efficiently visualized and
analyzed. The platform’s segmentation capabilities encompass both
automated Al-assisted volume annotations and manual refinement
tools (Fig. 9d), enabling researchers to generate training data for
machine learning models while maintaining annotation quality control.
Skeleton-based segmentation approaches (Fig. 9e) complement volume
segmentation by enabling high-speed neural tracing, with trained anno-
tators achieving speeds of 1.5 +0.6mm/h for axons and 2.1 +0.9mm/h
for dendrites in 3D EM data Boergens et al. [72].

These platform capabilities directly support the methodological di-
versity observed in our review, where 83% of studies employed super-
vised learning approaches with varying degrees of manual annotation
refinement. To demonstrate practical applications of these platform ca-
pabilities, Fig. 10 presents real-world segmentation examples from our
brain EM datasets. The multi-view interface (Fig. 10a) showcases inter-
active segmentation and 3D reconstruction capabilities, with orthogo-
nal slice views (XY, YZ, XZ) displaying segmented dendritic structures
and myelinated axons overlaid on high-resolution grayscale EM data.
Multi-planar navigation (Fig. 10b) demonstrates synchronous cross-
sectional analysis enabling verification of segmentation accuracy across
spatial dimensions. Fine-scale synaptic structure annotation (Fig. 10c,d)
illustrates precise mapping of dendritic spines, presynaptic boutons,
and glial processes, revealing the complex ultrastructural relationships
essential for understanding neural microcircuits. The 3D volumetric
reconstructions (Fig. 10e) provide high-fidelity mesh representations
that enable quantitative morphological analysis and spatial relationship
assessment at nanoscale resolution.

These visual examples demonstrate both the remarkable capabilities
and persistent limitations identified in our in-depth analysis of cur-
rent segmentation approaches across diverse neural structures. While
platforms successfully segment clearly defined neuronal components
and synaptic structures, significant challenges remain in regions with
poor membrane contrast, imaging artifacts, or complex ultrastructural
arrangements—consistent with our findings that CNN-based methods
achieve superior performance on well-defined structures but strug-
gle with complex morphologies. Our meta-analysis confirms that the
diversity of available tools, from Al-assisted volume annotations to
high-speed skeleton tracing, reflects the methodological fragmentation
observed across the 46 experiments reviewed. The visual workflows
presented illustrate how computer graphics advances enable sophis-
ticated analysis, yet our evaluation reveals substantial gaps in stan-
dardized benchmarking and reproducibility standards. Moving forward,
the integration of these advanced visualization platforms with the
emerging transformer-based and foundation models identified in our
review presents significant opportunities for improving both segmenta-
tion accuracy and collaborative research workflows in connectomics.

4.4. Challenges, limitations, and reproducibility

Despite significant progress, several interconnected challenges per-
sist across both the field and our review methodology. The annotation
burden remains prohibitive, requiring specialized expertise and exten-
sive time investment that limits dataset scale and diversity. This chal-
lenge is compounded by architectural tradeoffs where 3D approaches
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FAST BROWSING.

(a) Fast browsing capabilities with specialized storage, streaming, and rendering
technology enabling real-time access to multi-terabyte EM datasets through web
browsers without additional installations.

(b) 3D mesh visualization of segmented neural structures with automatic mesh
generation from volume annotations and export capabilities to professional 3D
rendering software.

(c) Volume EM interface optimized for large raw EM data navigation with real-time
viewport rendering and 3D mesh computation capabilities.

You can also draw a
rectangle around the object

(d) Al-assisted volume annotation tools featuring quick-select functionality, inter-
polation features, and manual brush/trace refinement for machine learning training
data generation.

(e) Skeleton annotation interface for high-speed neural tracing with Flight Mode
capabilities, achieving professional annotation speeds of 1.5 + 0.6 mm/h for axons
and 2.1 + 0.9 mm/h for dendrites, with hierarchical organization and annotation
features.

Fig. 9. Overview of modern brain EM segmentation platform capabili-
ties demonstrating the integration of computer graphics techniques with
neuroscience workflows. These visual examples illustrate both successful seg-
mentation of diverse neural structures (neurons, synapses, organelles) and the
technological infrastructure supporting collaborative connectomics research.
Images courtesy of WEBKNOSSOS platform (https://webknossos.org/).

better capture structural continuity but impose substantially higher
computational demands, forcing many studies toward patch-based pro-
cessing or downsampling that can compromise fine structural details.
Computational scalability presents a significant barrier to practical
deployment, with processing teravoxel-scale volumes requiring dis-
tributed computing resources unavailable to many research groups.
The most computationally intensive approaches required dozens of
high-end GPUs, achieving processing throughput of approximately 3
mega-voxels per second per GPU but limiting widespread adoption.
This computational burden is particularly challenging given that only
54% of studies provide publicly available code, with CNNs showing the
highest availability (67%) compared to newer architectural approaches.
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(a) Interactive segmentation and 3D reconstruction showing multi-view interface
with orthogonal slice views (XY, YZ, XZ) displaying segmented dendritic struc-
tures (cyan-green) and myelinated axons (dark blue) overlaid on high-resolution
grayscale EM data.

(b) Multi-planar navigation and 3D ion demonstrating s ous multi-
slice analysis with blue myelinated axon and green dendritic process segmentations
validated across spatial dimensions.

(c) Fine-scale segmentation of synaptic structures showing precise annotation of
dendritic spine (green), presynaptic bouton (blue), and glial process (red) within
dense neuropil environment.

(d) High-resolution synaptic microcircuit annotation illustrating tripartite synapse
organization with spine-bouton contact and surrounding glial process, enabling
nanoscale connectivity mapping.

=

(e) 3D volumetric reconstruction of segmented neuronal structures with slice
context, showing high-fidelity mesh representations of dendritic structure (green)
and myelinated axon (blue) within a 10 um field of view, enabling quantitative
morphological analysis.

Fig. 10. Brain EM segmentation examples illustrating platform perfor-
mance on neural tissue datasets. Diverse ultrastructural components—neurons,
synapses, glia—are segmented at nanoscale resolution, demonstrating both
precision and challenges in complex neuropil. Data acquired with Zeiss Vo-
lutome on Gemini 460 SEM at Neuroscience Institute Cavalieri Ottolenghi
(Orbassano, Italy).

Domain adaptation across different brain regions, species, or imag-
ing protocols remains challenging, with only 23% of studies explic-
itly addressing generalization through transfer learning or augmen-
tation techniques. Our meta-analysis confirms this limitation, show-
ing that methods evaluated on single datasets often fail to maintain
performance when applied more broadly.

Our review itself faces limitations including potential publication
bias, particularly for conference proceedings not indexed in major
databases, and heterogeneous reporting that limited quantitative syn-
thesis capabilities. The rapid evolution of deep learning methods means
some findings may be superseded by the time of publication, while our
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reproducibility evaluation was based on code availability rather than
verification of implementation completeness or functionality.

4.5. Implications and future directions

The findings from our meta-analysis and systematic review have
significant implications for both connectomics research and the broader
visual computing community. The superior performance of foundation
models (13%-35% improvement over traditional CNNs) suggests that
adapting large pretrained vision models represents the most promising
near-term direction for reducing annotation requirements while im-
proving generalization. Self-supervised learning techniques show par-
ticular promise for large-scale EM datasets where complete manual
annotation is infeasible.

For researchers in connectomics, methodological choices should be
guided by specific research questions and computational constraints.
Our analysis confirms that specialized algorithms consistently outper-
form general-purpose approaches for targeted studies of specific struc-
tures, while approaches prioritizing topological correctness over pixel-
wise accuracy yield more biologically meaningful results for large-
scale connectivity mapping. The strong performance of topology-aware
metrics suggests that evaluation strategies should shift away from tradi-
tional pixel-based measures toward metrics that better reflect biological
significance.

The challenges addressed in brain EM segmentation extend far
beyond neuroscience, offering significant contributions to visual com-
puting through innovations in processing volumetric data at scale,
topology-preserving evaluation metrics, and multi-representation ap-
proaches. The volume sizes encountered (exceeding 50 teravoxels)
have driven developments in distributed computing frameworks and
memory-efficient inference techniques that benefit other data-intensive
domains. Topology-preserving metrics ensure structural continuity in
complex 3D networks—a challenge shared across medical imaging,
scientific visualization, and computer graphics.

Future research priorities should focus on establishing standardized
benchmark datasets and evaluation protocols to enable fair method
comparison and track progress over time. Multi-task learning frame-
works that simultaneously segment multiple structures and predict
their relationships could improve both biological consistency and com-
putational efficiency. Human-in-the-loop systems that efficiently incor-
porate expert feedback present opportunities for minimizing manual
effort while ensuring biological plausibility.

The field’s evolution toward integration across scales—connecting
ultrastructural EM data with other imaging modalities—represents per-
haps the most significant frontier for visual computing research in
connectomics. This integration, combined with advancing foundation
model capabilities and topology-aware evaluation frameworks, posi-
tions brain EM segmentation to enable high-resolution neural circuit
mapping at scales previously considered intractable, potentially bridg-
ing the gap between ultrastructural organization and functional prop-
erties of neural networks.

Success in addressing these challenges requires stronger repro-
ducible research practices, including standardized code sharing, model
distribution, and evaluation protocols. The field must move beyond
proof-of-concept demonstrations toward practical tools that accelerate
neuroscience discovery through reliable, scalable, and biologically
meaningful segmentation of brain ultrastructure.

5. Conclusion

This review and meta-analysis of 60 studies, with quantitative syn-
thesis of 27 studies (46 experiments), provides the first extensive
benchmark comparison for brain EM segmentation methods. Our analy-
sis reveals a field transitioning from traditional CNN approaches toward
foundation models and hybrid architectures that demonstrate clear
performance superiority. Our meta-analysis establishes that foundation
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models outperform traditional CNNs by 13%-35% across key metrics,
with the 3D Transformer + U-Net achieving the highest composite score
(0.954) across five datasets. Statistical analysis confirms significant
advantages for foundation models in instance-based metrics (Cohen’s
d = —6.44), while topology-aware evaluation metrics (clDice, ERL)
better capture biological significance than traditional pixel-wise mea-
sures. Critical challenges persist: only 26% of experiments validate
across multiple datasets, 54% of studies lack public code repositories,
and computational scalability limits practical deployment. However,
methods with cross-dataset validation show superior consistency (coef-
ficient of variation: 0.032), indicating that robust evaluation practices
yield more reliable approaches. The field’s evolution toward founda-
tion model adaptation and topology-preserving evaluation frameworks
positions brain EM segmentation to enable large-scale connectomics
studies previously considered intractable. Our unified benchmarks pro-
vide a foundation for reliable progress tracking, while the superior
performance of specialized, domain-specific architectures over compu-
tationally intensive general approaches offers practical guidance for
resource-constrained laboratories.

Success in advancing this field requires strengthened reproducible
research practices and standardized evaluation protocols. As brain EM
segmentation matures, integration with multimodal imaging promises
to bridge nanometer-resolution ultrastructure with whole-brain con-
nectivity, fundamentally advancing our understanding of neural orga-
nization and enabling neuroscientific discoveries impossible through
manual analysis alone.
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