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A B S T R A C T

Lensoside Aβ (LAβ) is a quercetin derivative isolated from the leaves and stems of the Lens culinaris cultivar Tina. 
Flavonoid-membrane interactions are crucial for their physiological and pharmacological activity. We have 
demonstrated the impact of LAβ on EYPC liposomes resembling the lipid phase of tumor cell membranes with the 
use of the 1H NMR technique and have examined its activity on HeLa cells for the first time. To study the in
teractions of the tested compound with lipids and proteins at the molecular level, the FTIR technique was 
applied. To reveal changes in morphology and ultrastructure as well as examine its effect on apoptosis induction 
and cell viability, SEM, TEM, light, and fluorescence microscopy, flow cytometry analysis, LIVE/DEAD assays 
were employed. The ability of LAβ to induce oxidative stress was determined by staining with DHR123. The FTIR 
analyses indicated that LAβ interacts with the PO2− groups in the polar head region. Moreover, a decrease in the 
relative protein concentration and changes in protein spectral profile in the amide I region were noted. Flavonoid 
reduced the viability of HeLa cells, which was correlated with the induction of apoptosis supported by SEM and 
TEM observations. Moreover, the addition of lensoside Aβ induced oxidative stress. These results confirm that 
lensoside Aβ may be used in novel therapeutic approaches for treating cervical cancer.

1. Introduction

Cervical cancer is a prevalent malignancy among women. It is the 
most common cause of cancer-related mortality worldwide. [1]. There 
are 530,000 new cases every year and more than half of these women die 
each year [2]. The main etiological agent of cervical cancer develop
ment is permanent infection with high-risk oncogenic human 

papillomavirus (HPV) [3]. Other factors that can trigger cervical cancer 
are young age of sexual initiation, multiple sexual partners, especially 
partners of “high risk”, oral use of hormonal contraception, poor so
cioeconomic conditions, low level of personal hygiene, a numerous 
births and smoking [4]. To improve treatment efficacy and reduce the 
morbidity and mortality rate of cervical cancer, development of new, 
more effective, and novel therapeutic strategies is a priority [1]. 
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Literature data show that a diet particularly rich in phytochemicals has a 
significant impact on some types of cancer [5,6]. Natural plant com
pounds, due to their safe action, low toxicity, and positive effect on the 
human body, have become the object of interest of many researchers. 
Understanding and describing the action mechanisms of new natural 
compounds should provide a novel insight into their use as natural 
drugs. One of the phytochemicals are flavonoids - secondary metabolites 
of plants, commonly present in vegetables, fruits, red wine, and black tea 
[7]. Flavonoids have been demonstrated to possess a wide range of 
biological and pharmacological activities, such as antioxidant, anti
cancer, antimicrobial, anti-inflammatory, and neuroprotective proper
ties [8]. Due to inhibition of proliferation, modulation of signaling 
pathways, and induction of apoptosis, these phenolic compounds are 
promising strategies in cancer treatment [9]. The antioxidant effect of 
flavonoids is based on several mechanisms, including direct scavenging 
of reactive oxygen species (ROS), activation of antioxidant enzymes, 
metal chelating activity, and inhibition of free radical forming enzymes 
[10–12]. In contrast some flavonoids can acts as prooxidants. They cause 
apoptotic death of cancer cells by increasing ROS levels and modulate 
detoxifying enzymes [13]. Their prooxidant activity depends on con
centration, structural characteristic, and culture conditions [14,15].

The edible lentil is an annual plant and belongs to the legume family. 
It is cultivated in many countries in North Africa, West, and South Asia, 
and Canada [16,17]. Contains a high level of active compound. Lentil 
seeds are a rich source of proteins (28 %), carbohydrates, minerals, and 
vitamin B [18,19]. Moreover, the seeds also contain phytosterols, sa
ponins, phytic acids, lectins, polyphenols, and phytoestrogens [20–24]. 
These compounds prevent chronic diseases such as cancer, cardiovas
cular disease, obesity, and diabetes [25]. The flavonoids, especially 
those isolated from lentil seeds, are well known. These are mainly cat
echins and glycosides of quercetin, kaempferol, or luteolin [20–24]. 
However, currently little is known about flavonoids present in the un
derground parts of lentil [26–28]. One of these compounds present in 
the leaves and stems of edible lentils is lensoside Aβ (LAβ). This com
pound is a glycoside derivative of quercetin, which also contains caffeic 
acid in its structure. The interest in this compound stems from the fact 
that it is a new isolated compound. Furthermore, secondary metabolites 
from this part of the plant are not well studied [17]. Additionally, it 
interacts with membranes, the first targets for a drug [29].

The therapeutic effect of plant compounds, such as antioxidant or 
anticancer activity, is related to their incorporation into membranes and 
change in their fluidity [30–32]. Membranes of cancer cells, due to a 
high amount of unsaturated lipids and low cholesterol levels, are more 
liquid than normal cell membranes. The cell cycle and the initiation of 
apoptosis may be associated with changes in the fluidity of cancer cells. 
The increased membrane fluidity of tumor cells can be counteracted by 
membrane-stiffening compounds. There is data confirming that flavo
noids prevent cancer cell membranes from fluidization. In addition, 
drugs can also trap free radicals or inhibit their diffusion through 
membrane fluidization or rigidity [33]. Our previous research showed 
that LAβ incorporates into model membranes formed with DPPC and 
creates hydrogen bonds with polar heads of lipids in the PO2− group 
region and the C – O – P – O – C segment. 1H NMR analysis revealed an 
ordering effect in both polar and non-polar region of the membrane. 
Furthermore, the parallel orientation of the tested compound with 
respect to the GUV membrane was confirmed by FLIM investigation 
[29].

Understanding the interaction of LAβ with the membrane may help 
to elucidate the molecular mechanisms of action and effects on cells that 
are essential for the treatment of many ailments. The objectives of this 
study were the investigation of the capacity of this flavonoid to interact 
with EYPC liposomes from egg yolk mimicking natural membranes and 
then examine its activity on protein and lipid components of HeLa cells. 
The present study is the first trial to explain such a mechanism of the 
novel flavonoid LAβ.

The application of the 1H NMR technique allowed to determine the 

ability of the lensoside Aβ to o incorporate, interact, and alter the dy
namic and structural attributes of EYPC liposomes. Fourier-transform 
infrared spectroscopy (FTIR) was carried out to reveal the effect of 
flavonoid on protein and lipid components of HeLa cells. The influence 
of LAβ on morphology, ultrastructure, morphometric parameters were 
determined with use of the scanning electron microscopy (SEM), the 
transmission electron microscopy (TEM) and light microscopy tech
niques. To address the issue of the impact of the examined compound on 
the initiation of apoptosis and the viability of the analyzed cells, a series 
of techniques were employed, including fluorescence microscopy, flow 
cytometry, NR assay, and LIVE/DEAD assay. Ultimately, the ROS level in 
tested cells was estimated by staining with DHR 123. The aforemen
tioned techniques were applied to link the effect of lensoside Aβ on 
proteins and lipids of HeLa cells with apoptosis induction, viability, al
terations in morphology and ultrastructure of cells. This may explain its 
mechanism of action on cancer cells, which is important for LAβ ther
apeutic activity.

2. Materials and methods

2.1. Chemicals

Lensoside Aβ was isolated from the aerial parts of Lens culinaris [17]. 
Flavonoid was dissolved in ethanol and was used for NMR experiments. 
The solution was stored in the dark. 1,2-diacyl-sn-glycero-3-phospho
choline from egg yolk (EYPC) was purchased from Sigma Chemical 
Co. Deuterium oxide (D2O) was purchased from ARMAR Chemicals Co. 
(Switzerland). All other chemicals were of the best quality available.

2.2. Nuclear magnetic resonance (1H NMR) analyses

Measurements were carried out according to the procedure described 
in the earlier paper [29]. Phospholipids (EYPC) and lensoside Aβ were 
dissolved in a chloroform/ethanol mixture (55:1 v/v) at the respective 
concentrations. The 1,2-diacyl-sn-glycero-3-phosphocholine concentra
tion in the sample was 3,2⋅10− 2 M and of the flavonoid 3.2 × 10− 4 M. 
First, samples were evaporated under a stream of nitrogen and then in a 
vacuum for 4 h. Next hydrated with D2O samples were vigorously 
shaken for 1 h on a shaker at room temperature. To obtain a homoge
neous lipid dispersion, lipid suspension was sonicated (8 × 3 s) with a 
sonicator (Sonics Vibra Cell™, Newtown, CT, USA) at 4 ◦C. 4 mM pra
seodymium trichloride (PrCl3) was added before measurements.

1H NMR spectra were performed on a Bruker Avance 300 NMR 
spectrometer using a 5-mm probe with pulsed field gradient capabilities. 
The 1H NMR parameters were as follows: spectral window 10,333 Hz, 
digital resolution 0.1576 Hz, pulse width 6.5 μs, acquisition and delay 
time were 3.17 s and 1 s, respectively.

2.3. Cell culture

Human cervix carcinoma cells (HeLa, No 85060701) were obtained 
from the European Collection of Authenticated Cell Cultures (ECACC). 
Cells were grown in RPMI 1640 medium (GIBCO BRL) supplemented 
with 5 % FBS (GIBCO BRL) (v/v) and containing penicillin 100 U/mL, 
streptomycin 100 μg/mL and amphotericin B 0.25 μg/mL (Sigma). They 
were kept at 37 ◦C in a 5 % CO2 humidified atmosphere. Experiments 
were conducted in 96-well plates, 25 cm2 cell culture flasks, or in 
Leighton dishes for scanning electron microscopy and fluorescence mi
croscopy. A stock solution of lensoside Aβ dissolved in dimethyl sulf
oxide (DMSO) was applied. The final concentration of DMSO in final 
dilutions did not exceed 0.025 %.

2.4. LAβ treatment

A stock solution of lensoside Aβ dissolved in dimethyl sulfoxide 
(DMSO) was prepared and kept in the dark. In the study, LAβ at the final 
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concentrations of 5, 10, 15, 25, and 50 μg/mL was used. The HeLa cells 
were incubated with examined flavonol for 24 and 48 h.

2.5. FTIR spectroscopy of HeLa cells

The cells were seeded in petri dishes at a density of 1 × 105 cells/mL 
and were treated with lensoside Aβ for 24 and 48 h at the concentration 
of 15 μg/mL. Then the medium was removed, and monolayer cells were 
washed with PBS, carefully harvested using cell scrapers and suspended 
in PBS buffer supplemented with 5 % of D2O. IR spectra of HeLa cells 
with and without examined flavonoid were recorded using the Fourier- 
transform infrared absorption spectrometer equipped with the attenu
ated total reflection set-up (ATR-FTIR). Measurements were carried out 
in accordance with the methodology described in the earlier article [34]. 
OPUS (Brucker, Germany) and Grams Al software from ThermoGalactic 
(USA) were used for spectral analyses.

2.6. Cell viability analysis by neutral red (NR) uptake assay and LIVE/ 
DEAD kit

a) Neutral red uptake assay (NR)
NR assays were performed according to the procedure described in 

the previous paper [35]. Experiments were carried out in 96-well mul
tiplates. After 24 and 48 h of incubation with LAβ at the doses of 5,10 15, 
25 and 50 μg/mL, the medium was removed, 100 μL of NR were added to 
each well, and incubated for 3 h at 37 ◦C in standard conditions. Next, 
NR was removed from the plate, and each well was rinsed with fixative 
solution (200 μL) (0.5 % formalin in 1 % CaCl2). Subsequently, 100 μL of 
solvent solution (1 % acetic acid in 50 % ethanol) was added to the wells 
and extracted for 20 min at room temperature. The absorbance was 
determined spectrophotometrically at wavelength λ = 550 nm using a 
plate reader (Emax; Molecular Devices Corp., Menlo Park, CA).

b) LIVE / DEAD cell viability test
The basis of this test is the different permeability of viable and 

damaged cells. In this test, SYTO 10 and DEAD red dyes were used. SYTO 
10 is a green fluorescence dye, and it stains living cells, i.e. cells with an 
intact cell membrane. DEAD red is a red fluorescent dye and only stains 
cells with a damaged membrane [36]. 2 μL of SYTO 10 dye and 2 μL of 
DEAD red dye, which were dissolved in 1 mL of HBSS buffer, were used 
to prepare the staining mixture. Cells were incubated with the tested 
compound at the concentrations of 5, 10, 15, 25 and 50 μg/mL for 24 
and 48 h. Next, cells were washed with HBSS buffer. Then 250 μL of the 
dye mixture solution was added and incubated for 15 min in the dark at 
room temperature. After that, cells were rinsed with HBSS buffer and 
fixed in 4 % glutaraldehyde for 1 h. Cells were washed again with fresh 
HBSS buffer. Observations were performed under a Nikon Labophot 2 
fluorescence microscope at a wavelength of 490 nm. 1000 cells from 
randomly selected places were analyzed. The test was performed in 
triplicate.

2.7. Morphometric parameters of HeLa cells

For this study, HeLa cells were incubated with 15 μg/mL of examined 
flavonoid for 24 and 48 h. Then, the cells monolayer was washed with 
PBS, carefully scraped with a cell scraper, and fixed in 4 % glutaralde
hyde for 1 h and post-fixed in 1 % osmium tetroxide for the next 1 h (at 
4 ◦C). The samples were dehydrated in an increasing gradient of acetone 
(at room temperature) and embedded in LR White resin. The semi-thin 
sections were obtained with the RMC MT-XL microtome. The sections 
were stained with toluidine blue dye and analyzed under an Olympus 
BX40 light microscope equipped with a Soft Imaging System (SIS) Col
orView III-u digital camera [37]. Morphometric parameters were 
measured and analyzed with a calibrated system, and the image was 
digitized using Soft Imaging System (SIS) Cell^D software. The cells 
selected for analysis were measured and counted by the program. 
Morphometric analysis was performed under 40 x magnification and 

included the area of the soma in μm2, perimeter and diameter of the 
soma in μm.

2.8. Scanning electron microscopy (SEM) of HeLa cells

To determine changes in the morphology of HeLa cell surfaces after 
treatment with Laβ scanning electron microscopy was used. Cells were 
fixed in 4 % glutaraldehyde for 1 h and post-fixed in 1 % osmium te
troxide for a further 1,5 h. The procedure was performed at 4 ◦C. 
Samples were dehydrated in increasing concentrations of acetone 
(30–100 %) at room temperature, dried in a desiccator overnight, and 
coated with gold on an Emitech K550X sputter [37]. The samples were 
analyzed by using a TESCAN Vega 3 LMU microscope (Czech Republic).

2.9. Transmission electron microscopy (TEM) of HeLa cells

Transmission electron microscopy was used to study the cell ultra
structure. Cells, after treatment with LAβ were harvested using a cell 
scraper and rinsed with PBS buffer. Then cells were fixed for 1 h in 4 % 
glutaraldehyde and post-fixed in 1 % osmium tetroxide for 1,5 h at 4 ◦C. 
Next, samples were dehydrated with increasing acetone concentrations 
(30–100 %) at room temperature and embedded in LR White resin. After 
polymerization, obtained blocks were cut into ultrathin sections (65–75 
nm) on a RMC MT-XL microtome (Tucson, Arizona, USA). The sections 
were collected on copper grids and contrasted with uranyl acetate and 
Reynolds’ reagent. TEM measurements were carried out in the labora
tory of Electron Microscopy of the Nencki Institute of Experimental 
Biology of the Polish Academy of Sciences in Warsaw with the appli
cation of the transmission electron microscope JEM 1400 (JEOL Co. 
Japan), equipped with a Roentgen microanalyzer (EDS INCA Energy 
TEM, Oxford Instruments, Great Britain) and a microscopic tomography 
system along with the CCD MORADA G2 (EMSIS GmbH, Germany) 
purchased from structural funds of UE within the project CZT BIM – 
“Equipping the biological and medical imaging laboratory.”

2.10. Apoptosis and necrosis determination

a) fluorescent microscopy
To determine the level of apoptotic and necrotic cells staining with 

fluorochromes - propidium iodide and Hoechst 33342 dyes (Sigma) 
were used [37]. After 24 and 48 h of incubation with Laβ, 2.5 μL of the 
staining mixture was added to 1 mL of the medium and incubated at 
37 ◦C for 5 min in darkness. The samples were analyzed under a fluo
rescence microscope, Nikon Labophot 2 fluorescence microscope 
equipped with a Canon Power Shot A 640 digital camera. Early 
apoptotic cells emitted bright blue fluorescence of nuclei, while pink 
fluorescence was characteristic for necrotic cells.

b) Flow cytometry
To quantify the number of apoptotic cells, an Annexin V- fluorescein 

isothiocyanate (FITC) apoptosis detection kit (BD Biosciences, BD 
Pharmingen™, USA) was used. Examined cells at a density of 6 × 105 

cells/mL were cultured in 6-well plates. After the 24 h the growth me
dium was replaced with a medium containing lensoside Aβ. The analyses 
were performed in accordance with the methodology described in the 
earlier paper. Viable cells, early apoptotic cells, late apoptotic cells, and 
necrotic cells were analyzed using a FACS Calibur flow cytometer. The 
dye fluorescence was measured in the FL-1 and FL-3 channels.

2.11. Cells staining with dihydrorhodamine (DHR) 123

Staining with dihydrorhodamine 123 allows the detection of oxida
tive stress appearing in the cells. The DHR 123 dye has no charge and 
can diffuse passively across the membrane. In the cytoplasm of the cell, 
dihydrorhodamine is oxidized by reactive oxygen species (ROS) to 
cationic rhodamine 123, which in the mitochondria gives green fluo
rescence [38]. The generation of ROS was detected by 
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dihydrorhodamine 123 (DHR123) staining. After 24 and 48 h of incu
bation with the examined flavonoid, the cells were washed and resus
pended in PBS buffer. Next, the dye DHR 123 was added to a final 
concentration of 0.5 μg/mL and incubated for 15 min at 37 ◦C. Obser
vations were made using a Nikon Labophot 2 fluorescence microscope 
using a B-2 A filter.

3. Results

3.1. Modification of dynamics and structural attributes of EYPC model 
membranes by LAβ

The 1H NMR technique was used to monitor the effect of LAβ with a 
model membrane formed with EYPC. Fig. 2 illustrates 1H NMR spectra of 
EYPC liposomes without and with a supplement of 1 mol% flavonoid. 
(See Fig. 1.)

In the spectra there are visible bands that align with major molecular 
features of EYPC liposomes. Hydrophobic region of the membrane are 
represented by CH3 and CH2 groups (Fig. 2 c) while N+ − (CH3)3 band is 
characteristic of the hydrophilic region of the membrane. Praseodym
ium chloride was added to the liposome suspension, which resulted in a 
split of the 1H NMR band corresponding to the choline head region into 
two bands, one from the outer layer of the liposome membrane (N- 
(CH3)3 

out) and the second from the inner layer of the liposome (N- 
(CH3)3 

in (Fig. 2 b). The ratio of the area under the signals (Iout / Iin) 
assigned to the outer layer I out to the inner layer Iin is proportional to the 
number of choline heads in the inner and outer layers of the membrane. 
A ratio of Iout/Iin >1 is characteristic for small unilamellar liposomes, 
while for multilamellar liposomes it is lower than 1. The addition of LAβ 
decreased the value of the Iout / Iin ratio from 1.0624 for pure EYPC to 
0.9395. Such an effect is most likely associated with the change in the 
physical attributes of the lipid bilayer that occurs as a result of flavonoid 
activity. Lensoside Aβ broadened the bands characteristic for CH3 and 
CH2 groups. It was observed that the value of the full width at half height 
(ν) exhibited an increase of 6.3 % and 14.4 %, respectively. The tested 
compound caused also the changes in the polar region of the phospho
lipids. In the presence of LAβ the value of ν parameters determined for N- 
(CH3)3 

in and N-(CH3)3
out groups increased by 7.8 % and 1.4 %, respec

tively. Moreover, examined flavonoid increased the splitting parameter 

of the resonance maximum characteristic for the choline head group (δ) 
from 0.1919 to 0.2002 ppm.

3.2. FTIR spectral analysis of HeLa cells after LAβ treatment

The FTIR spectroscopy was used to investigate the effects of lenso
side Aβ on the HeLa cervical cancer line.

Representative FTIR spectra of control HeLa cells and cells treated 
for 24 and 48 h with the examined compound acquired in the region 
between 4000 and 900 cm− 1 are shown in Figs. 3–6. Due to the low 
concentration of flavonoid relative to cellular components, its charac
teristic spectrum is not shown. All spectra were normalized over ⁓980 
cm− 1 peak characteristic for antisymmetric N+ − CH3 stretching 
vibrations.

In the region between 4000 and 970 cm− 1, absorption peaks char
acteristic of such molecules as proteins, lipids or nucleic acids are 
observed. The band centered at 2958 cm− 1 and 2926 cm− 1 (asymmetric 
C–H stretching vibrations of CH3 and CH2), 2872 cm− 1 and 2854 cm− 1 

(symmetric C–H stretching vibrations of CH3 and CH2) are character
istics for lipids alkyl chains. Absorption at ~1741 cm− 1 is attributed to 
ester C = O stretching of phospholipids. The signals between 1700 and 
1600 cm− 1 and 1580–1510 cm− 1 correspond to the amide I and amide II 
of proteins. The region between 1300 and 900 cm− 1 is usually assigned 
to phosphate groups related to nucleic acids (DNA, RNA) and phos
pholipids with dominant bands at ~1242 cm− 1 (antisymmetric 
stretching of the PO2− group) and 1086 cm− 1 (symmetric stretching of 
the PO2− group). The deformation vibration of the CH2 group (known as 
scissoring vibration) is represented by the signals at ~1460 cm− 1. Bands 
with maxima at 1150 cm− 1 and 1020–1025 cm− 1 are characteristic for 
C–O bonds of glycogen and other carbohydrates. Spectral analysis 
revealed that exposure to LAβ has induced changes in the intensity of 
some bands.

Analysis of the spectra after a 24-h incubation with LAβ revealed the 
presence of a negative peak over 3287 cm− 1, which is characteristic of 
amide A. Furthermore, a reduction in intensity was observed in the 
bands representing the symmetric and antisymmetric stretching vibra
tions of the CH2 i CH3 groups of the alkyl chains (Fig. 3a). A positive 
band at 1747 cm− 1 was noted in the difference spectrum (Fig. 3b). The 
Fig. 3c showed absorbance of infrared in the region between 1300 and 
900 cm− 1. Our data revealed that the maximum characteristic for the 
symmetric stretching vibrations of the group - PO2− (1082 cm− 1) is 
higher in the presence of lensoside Aβ than in HeLa control cells 
(Fig. 3c). This clearly indicates the interaction of flavonoid with this 
region by hydrogen bonds. At the same time, the absorption signals at 
1237 cm− 1 which are characteristic of the antisymmetric stretching vi
brations of the - PO2- groups were weaker after LAβ treatment. In the 
difference spectrum, the appearance of the band with a maximum at 
1155 cm− 1 was found (Fig. 3c). The presence of lensoside Aβ in HeLa 
cells had significant effect on the amide I (1600–1700 cm− 1) region. The 
observation of a negative band in this region indicates a reduction in the 
relative protein content. To ascertain the molecular organization of the 
proteins, the amide I region was analyzed (see Fig. 4). Overall secondary 
protein structure affects the shape of the amide I band. In the 
1700–1600 cm− 1 area, peaks were attributed to antiparallel β-sheets 
(1675–1695 cm− 1), α-helices (1648–1660 cm− 1), β-sheets (1625–1640 
cm− 1), unordered structures (1652–1660 cm− 1) and turns (1660–1685 
cm− 1) [39]. Analysis of this region revealed that the addition of LAβ 
caused a significant increase in β-sheet structures (1638 cm− 1, 1623 
cm− 1). Simultaneously, a clear decrease in turns (1665 cm− 1) and 
α-helices (1654 cm− 1) was revealed. This confirms that the tested 
compound causes partial protein aggregation (Fig. 4).

Treating HeLa cells with LAβ for 48 h resulted in changes to the IR 
absorption spectrum in the amide A (3300–3100 cm− 1), lipids 
(3000–2800 cm− 1) amide I (1700–1600 cm− 1) amide II (1580–1510 
cm− 1) and 1200–900 cm− 1 regions. Similarly to the 24-h incubation, a 
decrease in the 3300–3100 cm− 1 region was noted. Fig. 5a demonstrates Fig. 1. Chemical structure of Lensoside Aβ (LAβ) molecule [17].
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Fig. 2. 1H NMR spectra of model membranes made of pure EYPC (continuous line) and EYPC with LAβ at 1 mol% (dashed line) (A), spectra representing the polar 
head region (B) spectra from the hydrophobic apolar region of the model mebrane (C). PrCl3 was added to the samples prior to measurement. The graph illustrates 
the resonance line assignment and parameters employed in the spectral analysis. The following parameters were determined: the full width at half height (ν) and the 
splitting parameter of the resonance maximum corresponding to polar head groups (δ).

Fig. 3. Representative spectra of HeLa cells without and with the addition of lensoside Aβ of the a) 3800–2500 cm− 1 b) 2000–1300 cm− 1 c) 1300–900 cm− 1 regions. 
At the bottom parts of graphs, difference spectra are shown.
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Fig. 4. The amide I region in HeLa control cells (upper part of the graph, black line) and treated with LAβ for 24 h (upper part of the graph, red, dashed line). The 
bottom part of the graph shows the difference spectrum. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version 
of this article.)
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a decline in the absorbance of the peaks attributed to the symmetric and 
antisymmetric stretching vibrations of the CH2 and CH3 groups of the 
alkyl chains. In the band corresponding to an ester C = O stretching of 
phospholipids, a shift from 1738 cm− 1 in control cells to 1733 cm− 1 in 
cells treated with lensoside Aβ was revealed. Moreover, a decrease in 
intensity (a negative band in the difference spectrum with maximum at 
1061 cm− 1) of the band characteristic of the symmetric stretching vi
brations of the group - PO2− was noted (Fig. 5c). Simultaneously a 
positive band at 1126 cm− 1 in the difference spectrum was revealed 
(Fig. 5c).

Significant changes were noted in the area of amide I (1600–1700 
cm− 1) and amide II (1510–1580 cm− 1) regions (Fig. 6). The intensity of 
the amide I and amide II bands decreased following a 48 h exposure. 
This indicates a reduction in relative protein concentration after incu
bation with lensoside Aβ. There was a decrease in the β-sheet (1627 
cm− 1) with a simultaneous increase in the antiparallel β-sheet (1698 
cm− 1, 1686 cm− 1) and turns (1667 cm− 1). The obtained results show 
that after a longer incubation time, the flavonoid inhibits protein syn
thesis and causes their partial denaturation.

3.3. The effect of LAβ on viability of human cervix carcinoma cells

The cytotoxic effect of LAβ on HeLa cells was determined by the NR 
and LIVE/DEAD assays. The NR method indicated that the examined 
compound exhibited slight cytotoxic activity. Dose-dependent inhibi
tion of HeLa cell viability was observed. After 24 and 48 h of exposure to 
the flavonoid at a dose 15 μg/mL cell viability equalled 95 % and 96 % 
respectively, whereas at concentration 50 μg/mL was decreased to 89 % 
and 86 % (Fig. 7).

The LIVE / DEAD test is based on the different permeability of the 
membranes of viable and dead cells. Viable cells with undamaged cell 
membranes emit green fluorescence, while cells with damaged mem
branes (dead) are stained red. After lensoside Aβ treatment, a rise in the 
number of red stained cells was revealed (Fig. 8b and c). Shrunken cells 

with membrane blebbing (yellow arrows) were also observed (Fig. 8b 
and c). A dose-dependent decrease in the number of viable cells caused 
by Laβ was illustrated in Fig. 8d. After 24 h and 48 h incubation with the 
examined compound at the dose of 50 μg/mL, viability value was 81 % 
and 77 %, respectively (Fig. 8d).

3.4. The effect of LAβ on the initiation of apoptosis and necrosis in HeLa 
cells

The assessment of cell death in HeLa cells following incubation with 
LAβ was conducted by staining with fluorochromes: propidium iodide 
and Hoechst 33342 [40].

Cells showing the specific type of death were counted and presented 
relative to live cells. As shown in Fig. 9, treatment with the flavonoid 
resulted in a dose-dependent increase in apoptosis. LAβ at a concen
tration of 25 μg/mL induced 17 % of apoptosis and 3,7 % of necrosis. 
Following a 48-h incubation, the number of apoptotic cells increased in a 
dose-dependent manner (Fig. 9b). The highest level of apoptotic cells 
(15 %) was noted at 50 μg/mL. Simultaneously, a slight increase in 
necrotic cells was observed (3,5 %). This was accompanied by a 23 % 
depletion in cell viability as determined by the LIVE/DEAD assay 
(Fig. 8d).

To substantiate the aforementioned outcomes, flow cytometry ana
lyses were conducted and are presented in Figs. 10 and 11. For the 
purpose of the analyses, the cells underwent double staining with the 
annexin V-FTIC and propidium iodide dyes. Application of LAβ caused a 
higher level of apoptosis. The number of apoptotic cells (quadrant Q2 An 
+ / PI + − late apoptosis and quadrant Q4 An + / PI - early apoptosis) 
increased in a concentration-dependent manner. Compared to the con
trol cells, the apoptosis rate increased from 0.72 % to 3.95 %, 5.46 %, 
6.91 %, 8.26 % and 7.23 % after 24-h’ incubation with 5, 10, 15, 25 and 
50 μg/mL of LAβ, respectively (Fig. 10 b). The highest level of apoptosis 
was recorded at a dose of 25 μg/mL. At the same time, examined the 
flavonol slightly induced cell necrosis (quadrant Q1 An-PI +) from 0.82 

Fig. 5. FTIR spectra a) in the range 3800–2500 cm− 1, b) 2000-1300 cm− 1 and 1300–900 cm− 1 of untreated and treated with LAβ HeLa cells for 48 h. Difference 
spectra were presented at the bottom of the graph.
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Fig. 6. Alterations in the protein’s secondary structure after 48 h treatment with LAβ.
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% in the control group to 2.38 % at a concentration of 50 μg/mL 
(Fig. 10b). Similar effects were obtained after 48 h of incubation with 
the tested flavonoid (Fig. 11). The most effective dose was the 

concentration of 25 μg/mL (9.18 ± 0.51 %). Additionally, a rise in the in 
quantity of necrotic cells n from 2 % to 4.4 % at the dose of 50 μg/mL 
was also noted.

Fig. 7. Effect of lensoside Aβ on the viability of HeLa cells. The cell viability was assesed by the NR assay. The results represent the mean ± SD of tree independent 
experiments, *p < 0.05 in comparison to control, one- way ANOVA test.

Fig. 8. Cytotoxic effect of lensoside Aβ on HeLa cells. a - control cells, b-c - HeLa cells treated with the tested flavonoid, damaged cell membranes are stained red 
(white arrows), shrink cells with numerous membrane vesicles (yellow arrows), d - percentage of alive cells after incubation with LAβ. Results are shown as means ±
SD, n = 3; * p ≤ 0.05; Student’s t-test. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 9. The percentage of apoptotic and necrotic cells in HeLa cells treated with LAβ for 24 h (a) and 48 h (b). Results are presented as means ± SD, n = 3, * p ≤ 0.05; 
Student’s t-test. (c) Blue cells - normal (living) cells; cells showing intense blue fluorescence - apoptotic cells. Yellow arrows indicate apoptotic bodies. (For inter
pretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 10. a - Flow cytometry analysis of HeLa cells incubated with LAβ for 24 h at concentrations of 5, 10, 15, 25 and 50 μg/mL. Panel Q1 represents An-/PI+ cells 
dying via necrosis, Q2 - An+/PI+ cells dying by late apoptosis, Q3 - An-/PI- alive cells, Q4 - An+/PI- - cells in the early apoptosis stage. b– Perecentage of apoptotic 
and necrotic cells. Mean ± SD (n––3), statistically significant at p ≤ 0,1; ** p ≤ 0,01; *** p ≤ 0,001 compared to the control cells; one-way ANOVA test.
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3.5. LAβ changes morphology, ultrastructure and morphometric 
parameters of human cervix carcinoma cells

To ascertain alterations in the morphology of HeLa cells treated with 
lensoside Aβ, a scanning electron microscope (SEM) was used. The 
cervical cancer cell culture was dense and adherent. The cells were 
elongated and flattened (Fig. 12a i 12b). They have exhibited the typical 
morphological characteristics, including a high density of microvilli on 
the cell surface and the presence of various structures, such as lamelli
podia and filopodia (Fig. 12c). The cells were connected to one another 
via a series of processes.

After 24 and 48 h of incubation with the tested flavonoid, notable 
alterations in cell morphology and number were discerned. HeLa cells 
were sensitive to each of the compound concentrations that were used. 
Application of LAβ caused a decrease in the number of cells and a 
reduction of connections between them. The cells treated with the 
flavonoid were spherical and shrank (Fig. 12d, e, f, g). Significant 
changes in cell morphology, such as membrane blebbing, loss of 
microvilli, and the emergence of structures that resembling apoptotic 
bodies, were revealed (Fig. 12 h).

Further in this study, transmission electron microscope (TEM) was 
employed to demonstrate the effect of LAβ on the ultrastructure of HeLa 
cells. Fig. 13 shows the ultrastructure of control cells and cells exposed 
to flavonoid at dose 15 μg/mL for 24 h. In the control cells organelles of a 
typical appearance were observed. They had a large, centrally located, 
regular-shape nucleus with visible nucleoli and evenly dispersed chro
matin. The nuclei had discernible membranes. The endoplasmic retic
ulum (ER) with well-preserved cisternae and ribosomes adjacent to its 
surface were visible. The microvilli of the cell membrane and the con
nections between the cells were clearly visible (Fig. 13a, b). A 24-h 

incubation of HeLa cells with LAβ caused a decrease in cell viability to 
80,9 ± 2,5 %. Simultaneously, significant changes in the ultrastructure 
of cells exposed to the examined flavonoid were observed.The nuclei 
were irregularly shaped and shrunken, and chromatin was condensed 
and fragmented (Fig. 13d, f). Many small vesicles and big vacuoles with 
some dense material inside appeared in the cytoplasm (Fig. 13c). Cells 
treated with LAβ exhibited swollen mitochondria, membrane blebbing 
and reduced microvili (Fig. 13e). In some cells, changes characteristic 
for autophagy were observed.

Fig. 14 presents the morphometric parameters of HeLa cells before 
and after treatment with LAβ. The cells were exposed to the test com
pound at a dose of 15 μg/mL for 24 and 48 h. The dimensions of the cells 
and nuclei (diameter, perimeter and surface area) were measured.

Microscopic analyses showed that, in the HeLa cells, the addition of 
LAβ increased the number of cells with darker nuclei and condensed, 
dark cytoplasm. Conversely, the number of „light cells and nuclei” 
decreased compared to the control group (Fig. 14a). The conducted tests 
revealed a decreased perimeter in the examined cells. The mean 
perimeter in control light cells was 70.49 μm. In cells incubated with 
LAβ, the perimeter decreased to 68.39 μm. A similar change was 
observed in dark cells. In the flavonoid-treated cells, the perimeter was 
reduced by 2.3 % compared to the control. Reduction of dark and light 
nuclei perimeters was noted. Similar changes were observed after 48 h 
of incubation with the examined compound. LAβ decreased the perim
eter of light and dark cells by 21,9 % and 24,7 %, respectively (Fig. 14c).

Another measured parameter was the diameter of the cells and 
nuclei. Treatment with lensoside Aβ for 24 h decreased the diameter of 
dark HeLa cells. In control, the average diameter of dark cells was 17.38 
μm, whereas the diameter of the cells incubated with flavonoid, was 
16.76 μm. The mean diameter of the dark nuclei was 8 % less than that 

Fig. 11. a - Analysis of HeLa cells incubated with LAβ for 48 h at concentrations of 5, 10, 15, 25, 50 μg/mL by flow cytometry. Panel Q1 represents An-/PI+ cells 
dying via necrosis, Q2 - An+/PI+ cells dying by late apoptosis, Q3 - An-/PI- alive cells, Q4 - An+/PI- - cells in the early apoptosis stage. b– Perecentage of HeLa cells 
dying by apoptosis and necrosis. Mean ± SD (n––3); statistically significant at p ≤ 0,1; ** p ≤ 0,01; *** p ≤ 0,001 compared to the control cells; one-way ANOVA test.
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observed in the control cells. No alteration was observed in this 
parameter with regard to light nuclei A similar trend was noted after 
long-time incubation. The diameters of dark cells and nuclei decreased 
by 28.3 % and 28.2 %, respectively (Fig. 14 b). Analysis showed a 
reduction in the average surface area of examined cells. In dark cells, 
surface areas were decreased by 56 %. The addition of LAβ also reduced 
the surface area of light cells and light and dark nuclei (Fig. 14d).

3.6. LAβ induced oxidative stress in HeLa cells

The study aimed to determine the effect of the tested compound on 
the induction of oxidative stress in in vitro cultured cells. Intense green 
mitochondrial fluorescence was observed in cells with high levels of 
reactive oxygen species (ROS). The results are presented as a percentage 
of cells showing increased free radical levels within the total population 
of the tested cells.

Lensoside Aβ induced oxidative stress, after both 24 and 48 h. After 
24 h characteristic green mitochondrial fluorescence was observed in 
32 % of the cells at the highest doses (25 and 50 μg/mL) (Fig. 15 a). 
Extending the incubation time increased the number of cells with high 
ROS levels, up to 40 % at 25 μg/mL (Fig. 15 b).

4. Discussion

The biological activity of compounds is related to their interaction 
with membranes. Therefore, in our study we attempted to estimate the 
effect of lensoside Aβ on a model membrane made with EYPC and on the 
lipid and protein components of HeLa cells. We then determined the 
effect of this compound on the morphology, ultrastructure, viability and 
apoptosis induction of HeLa cells.

4.1. 1H NMR investigation

The cell membrane is the first specific barrier for molecules entering 
the cell. Therefore, the interaction with the lipid bilayer and membrane 
proteins has a significant impact on the flavonoid’s mechanism of ac
tion. The biological activity of compounds can be understood by 
considering two key factors: the way they interact with the membrane 
and their localization in the membrane [32]. Cell membranes are a 
primary target for anticancer and cancer chemopreventive agents [41]. 
To evaluate interaction of lensoside Aβ with liposomes made of EYPC the 
1H NMR technique was used. This technique is a useful tool for moni
toring the dynamic and structural attributes of membranes. Due to the 
content of unsaturated acyl chains, EYPC membranes are less compact in 
their structure. Based on the literature, it is known that the membranes 
of normal cells are more rigid than those of cancer cells, especially 
invasive ones [42,43]. Accordingly, in this investigation we used lipo
somes formed with EYPC, to mimic the lipid phase of cancer cell 
membranes. The results obtained with this technique indicated that the 
examined compound had been integrated into the phospholipids’ polar 
head group region. Moreover, a broadening of the band characteristic of 
the inner and outer layers of the polar head groups was observed, related 
to the restriction of the freedom of segmental movement in this area. In 
the presence of Laβ, a decrease in lipid movement freedom in the alkyl 
chain region of the EYPC liposomes was observed. These results are 
consistent with our previous findings regarding liposomes created with 
DPPC [29]. The incorporation of LAβ into DPPC liposomes also caused 
stiffening of the phospholipid polar zone and increased the value of the 
full width at half height of the peak attributed to -CH2 groups in the 
hydrophobic region. Studies of EYPC liposomes using 1H NMR and EPR 
techniques showed that another flavonoid - genistein also decreased the 
movement freedom in the hydrophilic region [44]. Our results obtained 

Fig. 12. HeLa cells investigated by scanning electron microscopy (SEM): a-c – control cells, d-h – cells incubated with LAβ; a – dense, flattened cells, b – adherent 
HeLa cells presenting microvilii on the surface, connections between neighbouring cells are visible, c – cells presenting microvili on the surface, processes connecting 
adjacent cells, d - shrunken HeLa cells (arrows), loss of connenctions between cells is visible, e - cells were shrunk and had a globular shape, loss of microvili was 
observed, f - after lensoside Aβ treatment loss of connections between adjacent cells and loss of microvili were revealed, g - HeLa cells showing blebs on the surface 
(arrows), h- HeLa cells exhibiting structures resembling apoptotic bodies (arrows).
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with the 1H NMR technique are partially in agreement with studies on 
the effect of quercetin (of which lensoside Aβ is a derivative) on DPPC 
membrane. Quercetin is located in the polar-nonpolar interface and also 
caused rigidity with respect to the polar region of the membranes. On 
the other hand, quercetin increased the motional freedom of lipids in the 
alkyl chain region [45]. A distinct effect of the tested compound on the 
fluidity of the hydrophobic region may be due to the difference in the 

lipid composition of liposomes and the structure of the quercetin de
rivative (presence of sugar moieties and caffeic acid). Besides, the 
splitting parameter (δ) has increased from 0.19 to 0.20 ppm. This is due 
to the fact that LAβ was incorporated into the polar zone, increasing the 
penetration of Pr 3+ ions into this region.

Our findings prove that the presence of lensoside Aβ has an ordering 
effect on liposomes made with EYPC, which may be important for its 

Fig. 13. Ultrastructure of HeLa cells examined by TEM: a-b – control cells, c-f – cells exposed to lensoside Aβ at concentration 15 μg/mL for 24 h. a- b– Untreated cells 
with mitochondria (m) and a large centrally located nucleus (N) with visible nucleolus (n). Black arrows indicate numerous microvilli. c – Fragment of HeLa cells 
with an irregularly shaped nucleus (N) visible, strong vacuolization (v), numerous condensed mitochondria (m) and autolisosomes (al), d – HeLa cells after treatment 
with LAβ with a irregularly shaped, and fragmented nucleus (N) and condensed chromatin. Large vacuoles (v) were noted. e – Cells exposed to the tested flavonoid 
with and autolisosomes (al). Membrane blebbing is visible (black arrows). f – HeLa cells presenting a shrunken nucleus (N), autolisosomes (al) and small vacuoles (v).
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anticancer properties. Based on the available literature, it is known that 
changes in membrane fluidity affect cell proliferation, the cell cycle and 
the initiation of apoptotic death. Neoplastic and metastatic cell mem
branes are more fluid than normal cell membranes, therefore 
membrane-rigidifying compounds would prevent the increased mem
brane fluidity of tumor cells. Consequently, altering the fluidity of 
membranes disrupts the conformation of enzymes and receptors that are 
important in tumorigenesis [33].

4.2. Lensoside Aβ effect on cellular components of HeLa cells

Subsequently, we employed the FTIR spectroscopy to investigate 
whether the tested flavonoid cause changes in the spectral profiles of the 
proteins and lipids in cervical cells. FTIR spectroscopy is a highly sen
sitive tool that enables the analysis of chemical modifications in cellular 
components (e.g., proteins, nucleic acids, and lipids) [46]. This tech
nique has been used by many researchers to study the interactions of 
bioactive compounds with cells and tissues [47–52]. Incubation with 
lensoside Aβ resulted in strong decrease in the oscillator strength of the 
amide I and amide II bands, indicating a reduction in relative protein 
concentration. During apoptosis existing proteins are modified and the 
new proteins are synthesized [53,54]. This is why we decided to analyze 
in detail the amide I area. The examined compound altered the spectral 
profile of the proteins in the HeLa cells in this region. Cells treated with 
flavonoids for 24 h exhibited lower levels of turns and α-helices, 
accompanied by higher levels of β-sheets. In turn, after a longer incu
bation time an increase in antiparallel β-sheets and turns and a decrease 
in β-sheets were noted. Such results may indicate the fact that after a 
longer incubation time, this compound inhibits protein synthesis and 
causes their partial denaturation. Cleavage of proteins by caspases 
changes in proteasome function and chaperone activity could change 
protein levels and affect their folding and localization. This, in turn in
fluences the IR absorption of peptide bonds [55].

Similar results were obtained by researchers investigating the effects 
of the natural product with anticancer activity (PM 701) on human lung 

cancer cells (A549). In the initial stages of apoptosis, the amount of 
β-sheets increases, while after a longer incubation time an increase in 
disordered structures was observed [56]. In turn, Elmadany and col
leagues’ studies on the synergy of doxorubicin and quercetin on the 
MCF-7 breast cancer cell line showed that the combined therapy with 
these two compounds reduced the protein concentration and changed 
the amide I region. At the same time, there was an increase in the 
number of β-sheet aggregates, and a decrease in the number of α-helix 
structures. A combination of quercetin and doxorubicin caused 
abnormal folding of proteins in MCF-7 cells and their aggregation, 
which in consequence induced apoptosis [57].

The phospholipids in the plasma membrane determine the mem
brane fluidity, stability and enzymatic activity [58]. Therefore, moni
toring changes in lipid absorbance is relevant for detecting apoptosis. 
Following LAβ treatment a positive peak in the difference spectrum with 
a maximum at 1747 cm− 1 corresponding to ester C––O stretching vi
brations of phospholipids was observed. Furthermore, the band 
contributing to the asymmetric stretching vibrations of the acyl chain 
CH3 groups with a maximum at 2957 cm− 1 and the bands at 2854 cm− 1 

and 2922 cm− 1 assigned to the symmetric and asymmetric stretching 
vibrations of the acyl chain CH2 groups were negative. This can be 
interpreted as a decline in HeLa cells membrane lipid levels and/or 
structural changes of phospholipids after LAβ treatment [53,59]. Many 
authors suggest that membrane changes such as phosphatidylserine 
exposure and membrane blebbing are linked to an increase in lipids in 
cells undergoing apoptosis [60]. However, in some investigations, a 
decrease in intensity of lipid bands in apoptotic cells was observed [55].

The present investigation has also revealed significant changes in the 
1300 and 900 cm− 1 regions assigned to phosphates in phospholipids and 
DNA. After, treatment with LAβ for 24 h the bands corresponding to the 
symmetric stretching of phosphodiester groups at 1082 cm− 1 were 
strengthened. Such an effect can be explained by the incorporation and 
interaction of the tested flavonol with the polar zone of the phospho
lipids. These conclusions are confirmed by the 1H NMR results and our 
previous study on DPPC liposomes [29]. The area sensitive to hydrogen 

Fig. 14. Alterations in the dimensions of HeLa cells and nuclei after treatment with LAβ. a – A representative image of a semithin section of the tested cells exposed to 
the flavonoid, yellow arrows show light cells with nuclei, yellows arrowheads indicate dark shrunk cells. b – d - An analysis of HeLa cells and nuclei dimensions 
(diameter, perimeter and surface area). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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bonding and interactions with compounds is the region of the symmetric 
vibrations of the stretching groups - PO2− [39]. In addition, numerous 
studies have shown that flavonoids binding via hydrogen bonds to polar 
head groups of phospholipids [29,35,61,62]. The region with a 
maximum of 1082 cm− 1 is also known to be related to cell nucleic acids 
[55,63]. As a result the action of drugs in the cells, there are changes to 
the DNA that are visible as alteration in the absorption intensity of bands 
in the 1300–900 cm− 1 region [55]. Our research showed that, after 48 h 
LAβ caused a slight decrease in the oscillator strength of the band 
characteristic of the symmetric stretching of - PO2− groups, which are 
found also in DNA. This decrease was observed as a negative band at 
1061 cm− 1 in the difference spectrum. Many authors have suggested 
that low intensity in the nucleic acid’s region is related to apoptosis 
[55,64–66]. During apoptosis DNA is compacted and absorbs less IR 
[60].

4.3. LAβ alters the morphology, ultrastructure and viability of human 
cervix carcinoma cells

In our investigation we determined the cytotoxic activity of LAβ 
against human cervical carcinoma cells. The results obtained with the 
neutral red (NR) test and the LIVE / DEAD tests were consistent and 
showed a decrease in cell viability. Simultaneously, fluorescent micro
scopy and flow cytometry analyses revealed that the application of the 
tested compound led to apoptosis in approximately 15 % of cells. 
Additionally, changes in morphology and ultrastructure characteristic of 
apoptosis under SEM and TEM microscopes were observed. Control cells 
have exhibited the expected morphological characteristics, including 

the presence of dense microvilli and many structures such as lamelli
podia and filopodia. The presence of filopodia and microvilli indicates 
the invasive potential of cancer cells and is a key factor in their migra
tory capacity. Application of LAβ caused significant changes in cells 
morphology, such as membrane blebbing, loss of microvilli, formation of 
apoptotic vesicles, and reduction of connections between cells. The cells 
treated with the flavonoid were spherical and shrunk. The tested 
flavonoid is a quercetin glycoside [17]. Numerous literature data show 
that quercetin exhibits highly cytotoxic activity and induces apoptosis of 
different types of cancer, including gastric cancer [67], breast cancer 
[68], colorectal cancer [69], oral cavity cancer [70], liver cancer [71], 
prostate cancer [72], thyroid cancer [73], leukaemia [74], pancreatic 
cancer [75] and lung cancer [76]. At the same time, an increasing 
number of investigations indicate that quercetin promotes the apoptotic 
death of cervical cancer cells [77–79].

The data obtained by Zhang and co-researchers corresponds with our 
findings. They revealed changes in the morphology of cervical cancer 
cells and initiation of their apoptosis after quercetin treatment. Cell 
shrinkage, a reduction in the number of microvilli and the formation of 
apoptotic bodies were observed [80]. Changes characteristic for 
apoptosis cells were also found by Talib and colleagues who studied the 
effects of methyl quercetin derivatives isolated from Inula viscosa on 
MCF-7 cells. Similarly to our study, the cells exposed to flavonoids were 
shrunken and had fewer microvilli. Membrane blebbing, and the loss of 
contact between adjacent cells as well as the formation of apoptotic 
bodies were observed [81]. In addition, other researchers found that 
flavonoids caused cell shrinkage and a reduction or complete loss of 
microvilli [82]. Alterations of cell morphology can be explained by their 

Fig. 15. Induction of oxidative stress in HeLa cells following exposure to LAβ for 24 and 48 h. a- the bars represents the average level of reactive oxygen species 
(ROS) after treatment with the flavonoid; b – control HeLa cells, c-e – HeLa cells after treatment with Laβ. Intensive green fluorescence was observed in cells with high 
levels of ROS. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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effect on cytoskeleton proteins. In our experiments, we proved that LAβ 
decreased the protein level in HeLa cells and changed their spectral 
profile. Additionally, modifications to cells morphology were identified. 
TEM observations showed that examined flavonoid induced alterations 
in the ultrastructure of the tested cells. This results are consistent with 
our outcomes obtained with SEM. The nuclei were irregularly shaped 
and shrunken, and chromatin was condensed and fragmented. Swollen 
mitochondria appeared in the cytoplasm. The cells exhibited intense 
vacuolization. Morphometric measurements revealed a decrease in the 
perimeter, diameter and surface area of the cells. In the presence of 
flavonoid an increased number of dark cells characterized by dense 
cytoplasm and condensed chromatin were observed. The results of 
Priyadarsini and co-author’s support our data. They found that HeLa 
cells exposed to quercetin were shrunken, exhibited condensed chro
matin and fragmented nuclei [83]. The findings of other researchers 
were also in accordance with our observations. They demonstrated that 
quercetin promotes apoptosis and inhibits the cell cycle in the G2/M 
phase, resulting in chromatin condensation and DNA fragmentation 
[84]. Cells treated with quercetin exhibited numerous vacuoles, 
condensed chromatin and membrane blebbing [85].

4.4. Prooxidative activity of LAβ

The latest research has shown that the anti-cancer effects of some 
flavonoids may be related to their pro-oxidative properties. Flavonoids, 
by increasing the level of ROS, activate apoptotic, necrotic and auto
phagic pathways and reduce tumor size [86].These compounds may 
induce apoptosis in cancer cells by disrupting the oxidative processes in 
cells, generating reactive oxygen species (ROS) or modulating detoxi
fying enzymes [87–89]. Due to the fact that one of the mechanisms of 
flavonoids action is related to their pro-oxidative properties, the influ
ence of LAβ on the level of ROS was investigated. Our study showed that 
the flavonoid induces apoptosis in HeLa cells. Moreover, the examined 
compound increased the level of ROS by 20 % compared to the control 
cells. Our observations are supported by the findings of other re
searchers. Similarly, quercetin may alter ROS metabolism and induce 
apoptosis. Bishayee and coauthors found that quercetin inhibits the cell 
cycle and induces apoptosis in HeLa cells by ROS accumulation and 
release of cytochrome c [90]. In Hep2G2 and HA22T/VGH cells, a high 
concentration of flavonol, generates free radicals after a longer incu
bation time. As a consequence, disruption of the mitochondrial mem
brane potential, release of cytochrome c, and apoptosis induction were 
revealed [91]. Furthermore, quercetin causes ROS-mediated apoptosis 
in prostate [92,93], gastric [94] and colon cancer cell lines [95]. It can 
also be used in combination therapy with other chemotherapeutic 
agents. Quercetin by accumulating ROS, enhances the anticancer ac
tivity of paclitaxel on prostate cancer cells [96].

5. Conclusions

The therapeutic effect of drugs, such as plant compounds, is directly 
linked to their incorporation into the lipid bilayer and the modification 
of membrane fluidity, as well as their impact on cell proteins. In order to 
comprehend the molecular mechanisms of action of flavonoids, which 
are crucial in the treatment of many diseases, it is imperative to explain 
their interactions with membranes and their effect on membrane pro
teins. Changes in membrane fluidity may affect the cell cycle and 
apoptosis in cancer cells. For this reasons we have undertaken 
comprehensive studies. Cancer cells membranes exhibit greater fluidity 
than normal cells. Therefore, we investigated the effect of lensoside Aβ 
on liposomes made of egg yolk phosphatidylcholine (EYPC), which 
mimics the lipid phase of cancer membranes. We revealed that the 
examine compound incorporates into the polar head region of unsatu
rated membranes and restricts motility in this zone. In HeLa cells, the 
regions between 900 and 1300 cm− 1 and amide I were targets for 
flavonoid. LAβ decreased the relative protein concentration and 

modified the secondary structure of proteins. Notable decrease in 
β-sheets accompanied by an increase in antiparallel β-sheets and turns 
were observed in the amide I area. Lensoside Aβ reduced the viability of 
HeLa cells and caused apoptosis. Moreover, changes in cell morphology 
and ultrastructure consistent with apoptosis were evident. Our studies 
have also confirmed the prooxidant activity of LAβ. The level of ROS 
after treatment with examined compound increased by 20 % compared 
to the control cells. The obtained outcomes indicate that lensoside Aβ by 
affecting the protein and lipid components of HeLa cells, could be a 
promising therapeutic agent.
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