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Irisin prevents and restores bone 
loss and muscle atrophy in hind-
limb suspended mice
Graziana Colaianni1, Teresa Mongelli1, Concetta Cuscito1, Paolo Pignataro1, Luciana Lippo1, 
Giovanna Spiro2, Angela Notarnicola1, Ilenia Severi  3, Giovanni Passeri4, Giorgio Mori5, 
Giacomina Brunetti1, Biagio Moretti1, Umberto Tarantino6, Silvia C. Colucci1, Janne E. 
Reseland  7, Roberto Vettor2, Saverio Cinti3 & Maria Grano8

We previously showed that Irisin, a myokine released from skeletal muscle after physical exercise, 
plays a central role in the control of bone mass. Here we report that treatment with recombinant Irisin 
prevented bone loss in hind-limb suspended mice when administered during suspension (preventive 
protocol) and induced recovery of bone mass when mice were injected after bone loss due to a 
suspension period of 4 weeks (curative protocol). MicroCT analysis of femurs showed that r-Irisin 
preserved both cortical and trabecular bone mineral density, and prevented a dramatic decrease of the 
trabecular bone volume fraction. Moreover, r-Irisin protected against muscle mass decline in the hind-
limb suspended mice, and maintained the fiber cross-sectional area. Notably, the decrease of myosin 
type II expression in unloaded mice was completely prevented by r-Irisin administration. Our data reveal 
for the first time that Irisin retrieves disuse-induced bone loss and muscle atrophy. These findings may 
lead to development of an Irisin-based therapy for elderly immobile osteoporotic and physically disable 
patients, and might represent a countermeasure for astronauts subjected to microgravity-induced bone 
and muscle losses.

Disuse osteoporosis is a worldwide problem that affects patients suffering from poor walking and impaired phys-
ical ability up to immobility. Elderly, para- or hemiplegia after spinal cord injury or stroke1, 2 and vegetative states3 
are examples of prolonged skeletal unloading that lead to decrease cortical mineral density and impairment of 
trabecular bone microarchitecture, resulting in skeletal fragility and increased fracture risk4. Data on fracture 
frequency in bedridden patients showed that 3.6% of 500 patients suffered from spontaneous fractures during a 
6-year follow-up period4, suggesting that disuse osteoporosis is a clinically relevant issue for its related morbidity 
and mortality as well as for health-care costs.

Another well-documented unloading condition affecting the skeleton is the long exposure to microgravity 
during spaceflight. Astronauts are prone to bone loss at a rate of 0.5% to 1.5% per month5, equally to the loss 
found in postmenopausal women in 1 year6, 7. Even the return to Earth cannot fully restore bone loss of astro-
nauts, who partially recover bone mineral density (BMD) in 1 year after returning from 4 to 6 months on the 
International space station8. As a result of weight-bearing removal, pathological changes affecting the skeleton 
are further exacerbated by concomitant onset of muscle atrophy. Indeed, astronauts experienced 4% to 8% mus-
cle volume decline after the first week of shuttle mission9 and up to 10% reduction in strength of knee extensor 
muscles and 8% decrease in muscle fiber cross-sectional area (CSA) has been found after 17 days in microgravity 
environment10. Thus, the influence of microgravity has been studied in order to investigate the myosin phenotype 
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changes in skeletal muscle fibers. Biopsies of vastus lateralis obtained from space shuttle astronauts were analyzed 
before and after 5- and 11-day spaceflights. According to this report11, fiber CSA of slow-twitch (Type I) and 
fast-twitch (Type II) fibers in post-flight biopsies were, respectively, 15% and 22% less than in preflight biopsies.

As during aging and immobility, these physiological changes caused by skeletal unloading determines onset 
of sarcopenia, which is characterized by a decrease in muscle fiber size (atrophy) and number (hypoplasia). 
Particularly, skeletal muscle in elderly subjects suffering from impaired walking showed greater atrophy of Type 
IIx fibers and a decrease in myosin heavy chains IIα and IIx mRNA levels12.

Several pharmacological and nutritional approaches have been tried to ameliorate the severe musculoskeletal 
injuries caused by mechanical unloading, but at present non-conclusive results have been obtained13. Since bone 
loss is often correlated with muscle wasting in several disuse-induced diseases, the interaction of these tissues 
has received increasing attention in recent years with mounting evidence suggesting the existence of a molecular 
crosstalk between muscle and bone. Among these molecules, the newly identified myokine Irisin is particularly 
relevant in the bone-muscle unit function, as we have recently shown14–17.

Irisin is a hormone-like molecule secreted from skeletal muscle in response to exercise both in mice and 
humans. Researchers originally identified Irisin as a myokine that targets white adipocytes to induce browning 
response and subsequently non-shivering thermogenesis18, but we demonstrated that Irisin also plays a cen-
tral role in the control of bone mass, with positive effects on cortical mineral density and geometry in vivo15. 
Recombinant Irisin (r-Irisin) induced increased cortical BMD, periosteal circumference and polar moment of 
inertia in long bones of healthy young mice15. Although Irisin clearly recapitulates some of the most important 
benefits of loading activity, such as physical exercise, its efficacy in unloading-induced osteoporosis has not been 
investigated yet. For this, we took advantage of the hind-limb suspended mouse, a murine model widely accepted 
for simulating weightlessness, in which load is prevented, but the passive muscular forces remain functional.

r-Irisin did not influence cancellous bone in healthy mice15, and as expected the trabecular microarchitecture 
remained intact. However, in the case of hind-limb suspended mice, the detrimental effect caused by the absence 
of load may affect the whole bone structure, with the major involvement of the trabecular compartment.

Here we show that r-Irisin treatment ameliorates disuse-induced osteoporosis and muscle atrophy in 
hind-limb suspended mice. We found that r-Irisin treatment markedly acted on cortical BMD with prevention 
of bone loss when hind-limb suspended mice were treated during suspension. Likewise, cortical BMD was com-
pletely recovered by r-Irisin injection in unloaded mice after a suspension period during which they developed 
expected bone loss. Furthermore, loss of trabecular BMD and bone volume fraction (BV/TV) in unloaded mice 
were also prevented by r-Irisin therapy. Moreover, we demonstrated that r-Irisin has a significant effect on muscle 
mass, known to be suffering from atrophy during unloading. The dramatic decrease in myosin type II expression 
(MyHC II) in vastus lateralis of suspended mice was completely prevented by r-Irisin.

Results
Data presented herein are based on two different protocols of treatment. The preventive protocol, where hind-limb 
suspended mice were treated with vehicle or r-Irisin (100 µg kg−1/weekly) during a 4-week suspension period. 
Results from these two groups of mice were compared to a control group of mice kept under normal loading and 
treated with vehicle. In the curative protocol, hind-limb suspended mice were suspended and left untreated for 
4 weeks and then treated with vehicle or r-Irisin (100 µg kg−1 weekly) for the following 4 weeks of suspension. 
Results from these two groups of mice were also compared to two control groups of mice, both treated with 
vehicle: rest mice, which were kept under normal loading, and reloaded mice, which were hindlimb-unloaded 
for 4 weeks followed by 4 weeks of re-ambulation with normal cage activities. Results of preventive and curative 
protocols have not been compared to each other. They have a different experimental timing because the preven-
tive protocol was performed to investigate if irisin could inhibit disuse-induced bone loss, whereas the curative 
protocol was performed to investigate if irisin could restore a pre-existing bone loss caused by disuse.

Body weight measurement. Body weights were not significantly different after treatment by either of the 
protocols; neither the preventive protocol (Table 1), nor the curative protocol (Table 2).

r-Irisin prevents disuse-induced bone loss. We have previously shown that r-Irisin, injected in healthy 
mice, stimulates cortical bone formation and recapitulates some of the most important benefits of physical exer-
cise on the skeleton15. This suggested that Irisin might be a potential candidate therapy for preventing bone 
loss caused by absence of mechanical loading. We therefore injected hind-limb suspended mice with r-Irisin 
(100 µg kg−1) or vehicle once a week for 4 weeks (preventive protocol) and compared the effect to littermate mice 
kept in resting condition and injected with vehicle. As internal control, we also injected mice kept in resting con-
dition with r-Irisin (100 µg kg−1).

Time Rest-veh-inj Unload-veh-inj Unload-Irisin-inj

Day 0 23.75 ± 0.91 24.66 ± 0.66 23.66 ± 0.65

Day 28 26.00 ± 0.53§ 25.77 ± 0.52 24.66 ± 0.66

Table 1. Mouse body weight (grams). Preventive Protocol: comparisons of Body Weights (grams) of male 
C57BL/6 mice in the three Experimental Groups before (day 0) and after hind-limb suspension (Day 28). Data 
are presented as mean ± SEM. §p < 0.05 (p value Day 28 Vs Day 0). No significant differences were detected 
between groups of mice at the end of treatment.
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X-ray imaging of intact animals showed a generalized increase in radio density in the long bones of unloaded 
mice treated with r-Irisin compared to those treated with vehicle (Fig. 1a). Through visual inspection of radi-
ographs, we observed in the femurs the major difference in radio density among groups of mice, as indicated 
by arrows. Moreover, as previously demonstrated15, X-ray imaging showed increased radio density in both 

Time Rest veh-inj Unload veh-inj Unload Irisin-inj Reload veh-inj

Day 0 25.50 ± 0.95 25.00 ± 0.55 24.57 ± 0.36 23.33 ± 0.66

Day 56 28.50 ± 0.95§§ 27.66 ± 0.27§ 26.28 ± 1.01§ 27.33 ± 1.15§§

Table 2. Mouse body weight (grams). Curative Protocol: comparisons of Body Weights (grams) of male 
C57BL/6 mice in the four Experimental Groups before (day 0) and after hind-limb suspension or reload activity 
(Day 56). Data are presented as mean ± SEM. §p < 0.05, §§p < 0.01 (p value Day 56 Vs Day 0). No significant 
differences were detected between groups of mice at the end of treatment.

Figure 1. Treatment with r-Irisin prevents bone loss in femurs from hindlimb-suspended mice. (a) Contact 
radiographs of selected long bones from normal loading mice (Rest veh-inj) and unloaded mice treated with 
vehicle or recombinant Irisin (r-Irisin, 100 µg kg−1 per week for 28 days, mice were sacrificed 24 hours after 
last dose). Arrows indicate difference in radiodensity between femur of unloaded mice treated with vehicle 
and femur of unloaded mice treated with recombinant Irisin. (b) Representative micro-CT-generated section 
images and calculated cortical and trabecular parameters of femurs harvested from Rest mice vehicle- or Irisin-
injected and Unload mice vehicle- or r-Irisin-injected. Cortical bone parameters included bone mineral density 
(BMD) and cortical thickness (Ct.Th). Trabecular bone parameters included bone mineral density (BMD), 
bone volume/total volume (BV/TV), trabecular number (Tb.N), trabecular thickness (Tb.Th), trabecular 
separation (Tb Sp) and Fractal Dimension. Data are presented as mean ± SEM. n = 7–8 mice per group. All 
data were normally distributed according to the Shapiro-Wilk normality test and analyzed by one-way ANOVA 
and Bonferroni’s post hoc analysis. Cohen’s d values were measured for non-significant differences of results 
and can be found as Supplementary Table S1. *p ≤ 0.05, **p ≤ 0.01 versus Rest vehicle-injected mice. ^p ≤ 0.05, 
^^p ≤ 0.01 versus Unload vehicle-injected mice.

http://S1
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femora and tibia of Rest irisin-treated mice compared with Rest mice treated with vehicle (Fig. 1a). Qualitative 
observations of microCT generated section images of femurs (Fig. 1b) showed a severe decrease of bone mass 
at both cortical and trabecular sites in unload mice treated with vehicle, but no marked difference was observed 
between unloaded mice treated with Irisin and control mice kept in resting condition and injected with vehicle 
(rest-veh-inj) (Fig. 1b). By microCT analysis, we found that cortical BMD in femurs from unloaded mice injected 
with vehicle was ~4% (p < 0.01) lower than cortical BMD of control mice (Fig. 1b). Interestingly, the unloaded 
mice injected with r-Irisin had no loss of cortical BMD (p = 0.69) compared to control mice, thus indicating that 
unloading-induced deterioration of the mineral component at cortical site was completely prevented by r-Irisin 
administration. As expected, cortical BMD was ~6.25% higher in Rest mice treated with r-irisin (p < 0.01) com-
pared with vehicle controls (Fig. 1b). In contrast, cortical thickness (Ct.Th.) that was a significant ~9% lower than 
in control mice, remained unaffected by r-Irisin treatment in both unloaded and rest groups.

Trabecular BMD was dramatically reduced by ~39% (p < 0.01) in unloaded mice compared to control mice, 
whereas r-Irisin treatment protected from this BMD decline (p = 0.10). Furthermore, the unloading condition 
dramatically reduced BV/TV with respect to control mice, whereas in unloaded mice treated with r-Irisin this 
effect was less dramatic, resulting in an attenuated decline in BV/TV by ~32% and in trabecular number (Tb.N) by 
~37%. Reliably, the increase of trabecular separation (Tb.Sp) observed in vehicle-treated unloaded mice (~27%; 
p < 0.05) was attenuated by ~17% in mice treated with r-Irisin. Instead, trabecular thickness (Tb.Th) was not 
affected by unloading and no significant change were observed in unloaded mice, treated either with vehicle or 
with r-Irisin, compared to control mice. Of note, the fractal dimension, an index of optimal micro-architectural 
complexity of trabecular bone, which decreased by ~14% (p < 0.05) in unloaded mice injected with vehicle versus 
control mice, was preserved by r-Irisin (p = 0.35) (Fig. 1b).

As we already showed for tibia15, r-irisin did not induce change in microstructural parameters of trabecular 
bone at the distal femurs: BMD, BV/TV, Tb.N, Tb.Th, and Tb.Sp were unchanged in r-irisin-treated Rest mice 
compared with vehicle controls (Fig. 1b).

r-Irisin inhibits sclerostin increase and osteoprotegerin decrease caused by unloading in vivo 
and restores osteoblastogenesis in ex vivo cultures from unloaded mice. As expected, after 
4 weeks of unloading, sclerostin expression in long bones was higher than in control mice (~210%, p < 0.05) 
(Fig. 2a), whereas no significant difference was detected in r-Irisin treated mice, although it tended to be higher 
than control. Unloading decreased the gene expression of Opg with respect to control mice (p < 0.05) (Fig. 2b) 
without affecting the Rankl mRNA level (Fig. 2c). Nevertheless, r-Irisin treatment attenuated the Opg decrease, 
with no effect on Rankl expression, thus resulting in a Rank-l/Opg ratio similar to mice kept under normal 
loading.

Ex vivo primary cell culture experiments were performed to investigate if the effect of irisin was persistent 
after treatment in vivo. Ex-vivo cultures of bone marrow stromal cells harvested from unloaded mice showed a 
significant reduction in colony forming-fibroblastoid (Cfu-f) at day 10 (Fig. 2d). This pronounced decrease in 
osteoblast differentiation was demonstrable further by the reduced expression of Alkaline Phosphatase (Alp) 
and Collagen I (Coll I) mRNA (Fig. 2e,f). Conversely, ex vivo cultures of bone marrow stromal cells derived from 
unloaded mice treated with r-Irisin formed Cfu-f colonies similarly to control mice (Fig. 2d). Moreover, r-Irisin 
treatment inhibited the decrease in Alp and Coll I mRNA expression (Fig. 2e,f). We next investigated the effects 
of r-Irisin treatment on ex-vivo osteoclastogenesis. Bone marrow cells from unloaded mice injected with vehicle, 
cultured in the presence of Rankl, showed a significant increase in osteoclast (OC) number compared with cells 
from control mice (Fig. 2g). We observed that OC formation was higher than control also in bone marrow cells 
from unloaded mice treated with r-Irisin, even though, in both groups of hind-limb suspended mice, this was 
accompanied by unchanged expression of Phosphatase Acid Tartrate Resistant (Trap) and Cathepsin K (Cat K) 
mRNA (Fig. 2h,i).

r-Irisin prevents disuse-induced muscle atrophy. It has been demonstrated that mice treated with 
r-Irisin displayed a higher number of FNDC5 positive muscle fibers compared to mice injected with vehicle, 
indicating that Irisin synthesis may be enhanced by its autocrine action15. In order to determine whether the 
muscle atrophy, typical of mechanical unloading, is prevented by r-Irisin treatment, we analysed vastus lateralis 
harvested from mice treated accordingly to the preventive protocol. Unloading resulted in a ~63% reduction in 
weight of vastus lateralis/body weight (p < 0.001) (Fig. 3a), whereas treatment with r-irisin induced no difference 
from resting control mice (p = 0.39).

In order to determine whether the reduction in muscle weight could be attributable to a reduction in overall 
muscle fiber CSA, hematoxylin and eosin (H&E) staining was performed on vastus lateralis sections (Fig. 3b). 
Measurements of CSA showed that fibers from unloaded mice treated with vehicle had lower area than control 
mice (p < 0.05), whereas fibers from unloaded mice treated with r-Irisin had similar size as those of control mice 
(p = 0.44) (Fig. 3c). Moreover, consistently with an overall reduction in fiber sizes, the frequency distribution of 
muscle fiber CSA was shifted leftward in the unloaded group treated with vehicle. Expectedly, unloaded mice 
treated with r-Irisin displayed fiber area distribution similarly to control mice (Fig. 3d).

Since several forms of muscle wasting can affects mitochondria, their morphology was monitored. 
Immunohistochemistry revealed that muscle sections of unloaded mice had less abundant mitochondrial 
voltage-dependent anion channel (VDAC) staining, used as an index of mitochondrial content, whereas mus-
cle from r-Irisin treated animals showed VDAC-positivity similar to control mice (Fig. 4a). Morphometry of 
immunoreactive areas fully confirmed the visual evidence (Fig. 4b). To further analyse the functional capability 
of newformed mitochondria, we measured cytomchrome c oxidase subunit I (COX IV) protein levels, an enzyme 
of the respiratory electron transport chain. Although COX IV expression was unchanged in unloaded mice with 
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respect to control mice, its levels were significantly elevated by 2.5-fold in vastus lateralis of unloaded mice treated 
with r-Irisin compared with controls (Fig. 4c).

Furthermore, r-Irisin increased the gene expression of nuclear respiratory factor 1 (NRF1) and mitochondrial 
transcription factor A (TFAM) in unloaded mice (Fig. 4d,e). In line with these data electron microscopy showed 

Figure 2. Treatment with r-Irisin inhibits sclerostin increase and Opg decrease caused by unloading in vivo. 
(a) Western immunoblotting and densitometric quantitation of sclerostin expression versus control loading 
(β-actin) in long bones (depleted of bone marrow) harvested from Rest vehicle-injected and Unload vehicle- or 
r-Irisin-injected mice (r-Irisin, 100 µg kg−1 per week for 28 days, mice sacrificed 24 hours after last dose). (b) 
Opg and (c) Rank-l mRNA expression (qPCR) in long bones (depleted of bone marrow) harvested from Rest 
vehicle-injected and Unload vehicle- or r-Irisin-injected mice. (d) Ex vivo Cfu-f formation (%), (e) Alp and 
(f) Collagen I mRNA expression (qPCR) in ex vivo cultures obtained from bone marrow harvested from Rest 
vehicle-injected and Unload vehicle- or r-Irisin-injected mice. (g) TRAP-positive osteoclast formation (%), (h) 
Trap and (I) Cathepsin K mRNA expression (qPCR) in ex vivo cultures obtained from bone marrow harvested 
from Rest veh-injected and Unload vehicle- or r-Irisin-injected mice. Data are presented as mean ± SEM. n = 3 
mice per group. All data were normally distributed according to the Shapiro-Wilk normality test and analyzed 
by one-way ANOVA and Bonferroni’s post hoc analysis. *p ≤ 0.05, **p ≤ 0.01 versus Rest vehicle-injected mice. 
^p ≤ 0.05 versus Unload vehicle-injected mice.
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marked decrease in mitochondrial density in vastus lateralis fibers from unloaded mice. Nevertheless, atrophic 
muscle fibers also showed a disorganized mitochondrial network in comparison to muscle fibers of control mice 
which displayed the typical striated distribution of intermyofibrillar mitochondria (Fig. 4f). Increased mitochon-
drial biogenesis (mitochondrial density and size), was observed in muscle fibers from unloaded mice injected 
with r-Irisin, even when they were compared to control mice (Fig. 4f). Altogether these data support a stimulated 
mitochondrial biogenesis, in line with recent data obtained in vitro19. Additionally, immunofluorescence revealed 
that co-localization of FNDC5 positive and ATPsynthase positive fibers was reduced in unloading condition with 
respect to control mice (Fig. 4g), as also confirmed by quantification of percentage of FNDC5/ATPsynthase fibers 
(Fig. 4h). The treatment with r-Irisin preserved the number of fibers co-expressing FNDC5 and ATPsynthase, 
thus indicating a possible correlation between the autocrine-induced FNDC5/Irisin expression pattern and the 
mitochondrial content in skeletal muscle (Fig. 4g,h).

Furthermore, western blotting analysis demonstrated a dramatic reduction in myosin type II (MyHC II) 
expression in vastus lateralis from unloaded mice treated with vehicle compared to control mice (p < 0.05) 
(Fig. 4i). This significant twofold decrease of MyHC II expression was abolished when unloaded mice were treated 
with r-Irisin, demonstrating that MyHC II is sensible to Irisin action. To further investigate which sub-type of 
MyHC II was particularly involved in Irisin-dependent prevention of unloading-induced muscle wasting, we 
explored the expression of myosin type IIα (MyHC IIα), type IIx (MyHC IIx) and type IIβ (MyHC IIβ), which are 
classified in this sequence from the slowest to the fastest isoform of myosin type II. Quantitative PCR showed that 
MyHC IIx mRNA was strongly downregulated in muscle from unloaded mice treated with vehicle versus control 
mice (p < 0.001). r-Irisin treatment, not only inhibited its decline, but also increased its expression with respect 
to control mice (p < 0.01) (Fig. 4j). MyHC IIb mRNA expression was unchanged in unloaded mice, either treated 
with vehicle or with r-Irisin, respect to control mice (Fig. 4k). No detectable levels of MyHC IIα were observed in 

Figure 3. Treatment with r-Irisin prevents muscle wasting in hindlimb-suspended mice. (a) Vastus lateralis 
weight normalized to total body weight from normal loading mice (Rest veh-inj) and unloaded mice treated 
with vehicle or recombinant Irisin (r-Irisin, 100 µg kg−1 per week for 28 days, mice sacrificed 24 hours after 
last dose). (b) Photomicrographs of hematoxylin and eosin stained sections of vastus lateralis from Rest 
vehicle-injected and Unload vehicle- or Irisin-injected mice (magnification: 20x). (c) Quantitative assessments 
of Cross-Sectional Area (CSA) and (d) CSA area distribution of fibers from vastus lateralis harvested from 
normal loading mice (Rest vehicle-inj) and unloaded mice treated with vehicle or r-Irisin. Data are presented 
as mean ± SEM. n = 6–7 mice per group. All data were normally distributed according to the Shapiro-Wilk 
normality test and analyzed by one-way ANOVA and Bonferroni’s post hoc analysis. *p ≤ 0.05, ***p ≤ 0.001 
versus Rest vehicle-injected mice. ^p ≤ 0.05 versus Unload vehicle-injected mice.
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Figure 4. Treatment with r-Irisin inhibits myosin heavy chain type II decrease caused by unloading in 
vivo. (a) Representative images of immunohistochemistry staining of VDAC protein in vastus lateralis from 
normal loading mice (Rest vehicle-inj) and unloaded mice treated with vehicle or recombinant Irisin (r-Irisin, 
100 µg kg−1 per week for 28 days, mice sacrificed 24 hours after last dose) (magnification: 40x). (b) Quantitative 
assessment of percentage of VDAC staining. (c) Densitometric quantitation of cytomchrome c oxidase subunit 
I (COX IV) expression versus control loading (α-tubulin) in vastus lateralis isolated from Rest vehicle-
injected and Unload vehicle- or r-Irisin-injected mice. (d) Nrf-1 and (e) Tfam mRNA expression (qPCR) in 
vastus lateralis harvested from Rest vehicle-injected and Unload vehicle- or Irisin-injected mice. (f) Electron 
microscope images. (g) Fluorescent micrographs of vastus lateralis sections of Rest vehicle-injected and Unload 
vehicle- or r-Irisin-injected mice immunolabeled for FNDC5 (green) and ATP synthase (red) (magnification: 
20x). (h) Quantitative assessment of percentage of co-localization of FNDC5 and ATP synthase positive fibers 
(i) Densitometric quantitation of myosin heavy chain type II (MyHC II) expression versus control loading 
(α-tubulin) in vastus lateralis isolated from Rest vehicle-injected and Unload vehicle- or r-Irisin-injected mice. 
(j) MyHC IIx, (k) MyHC IIβ and (l) MyHC I mRNA expression (qPCR) in vastus lateralis harvested from Rest 
vehicle-injected and Unload vehicle- or Irisin-injected mice. Data are presented as mean ± SEM. n = 3–4 mice 
per group. All data were normally distributed according to the Shapiro-Wilk normality test. Results from Fig. 4 
were analyzed by one-way ANOVA and Bonferroni’s post hoc analysis. *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001 
versus Rest vehicle-injected mice. ^p ≤ 0.05, ^^^p ≤ 0.001 versus Unload vehicle-injected mice.
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either of the groups of mice (data not shown). Moreover, quantitative PCR showed that MyHC I mRNA expres-
sion was lower than control in both vehicle- and r-Irisin treated unloaded mice (Fig. 4l).

r-Irisin did not influence the regenerative potential of muscle stem cells. Since we have shown 
that Irisin treatment was able to prevent the damage of unloaded skeletal muscle in vivo, we aimed to evaluate if 
muscle satellite stem cells proliferation and differentiation, the key steps in the regeneration of skeletal muscle, 
were involved in this process. We did not observe any significant difference in the percentage of MyoD+/DAPI+ 
satellite cells in vastus lateralis (Fig. 5a, white arrows) in the three groups of mice (Fig. 5b). Likewise, no differ-
ences were observed on Pax7-positive cells after r-Irisin treatment (Fig. 5c,d). These results suggest that the effect 
of Irisin on muscle atrophy does not involve satellite cells.

r-Irisin restores disuse-induced bone loss. In order to investigate if Irisin was effective in retrieving an 
already developed bone loss, we left untreated hind-limb unloaded mice for 4 weeks and then we treated them 
with r-Irisin (100 µg kg−1) or vehicle once a week for a 4-week period during which mice were left suspended. In 
addition to the control group of mice kept in resting condition throughout the experiment (8 weeks), we also used 
a group of reload mice, as internal control of loading, which were hindlimb-unloaded for 4 weeks followed by 4 
weeks of re-ambulation that involved normal cage activities.

MicroCT generated section images (Fig. 6) showed marked damage at both cortical and trabecular sites of 
femurs from unloaded mice treated with vehicle. Qualitative observations of femurs were confirmed by microCT 
analysis of bone parameters. Cortical BMD was decreased in femurs from unloaded mice compared to control 
mice (Fig. 6), whereas treatment with r-Irisin recovered cortical BMD to that of control mice (p = 0.19). Similarly, 
it was also fully recovered by reloading activity, suggesting that the effect of r-Irisin on cortical BMD is likely 
reloading-mimetic. In contrast, both unloaded mice, either treated with vehicle or with r-Irisin, showed ~7.71% 
(p < 0.01) and ~8.06% (p < 0.01) decrease of Ct.Th. versus control mice, respectively. Conversely, reloaded mice 
fully retrieve femoral Ct. Th to control level (p = 0.35) (Fig. 6).

Like cortical, also trabecular BMD was markedly reduced in unloaded mice treated with vehicle with respect 
to control mice (p < 0.05), whereas trabecular BMD in unloaded mice treated with r-Irisin was not significantly 
different from control mice (p = 0.24), Likewise, trabecular BMD in reloaded mice was not significantly different 
from control mice (p = 0.38), but not fully recovered (Fig. 6). As expected, the unloading condition strongly 
decreased BV/TV, whereas treatment with r-Irisin retrieved loss of trabecular mass, resulting in a ~32% of the 
decline in BV/TV similar to rescue by reloading activity. The effect of r-Irisin was exerted on trabecular number 
(Tb.N), which was significantly reduced in unloaded mice treated with vehicle (p < 0.01), whereas treatment 
with r-Irisin recovered this by ~17%, still resulting in a not significant reduction (p = 0.32) in Tb.N of ~12.98% 

Figure 5. Treatment with r-Irisin does not affect satellite cells in hindlimb-suspended mice. Fluorescent 
micrographs of vastus lateralis sections from Rest vehicle-injected and Unload vehicle- or Irisin-injected mice, 
immunostained (red) for MyoD (a) and Pax7 (c) and counterstained for Laminin (green) and DAPI (blue). The 
percentage of MyoD positive (b) and Pax7 positive (d) cells are quantified. Data are presented as mean ± SEM. 
n = 3 mice per group. All data were normally distributed according to the Shapiro-Wilk normality test and 
analyzed by one-way ANOVA and Bonferroni’s post hoc analysis.
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compared to control mice. Interestingly, also in reloaded mice, Tb.N was partially recovered by ~8.61%, but to a 
lower extend than unloaded mice treated with r-Irisin. Consistently with the decreased number of trabeculae in 
femurs of vehicle-treated unloaded mice, trabecular separation (Tb.Sp) was ~14.75% higher than in control mice 
(p < 0.001). Surprisingly, Tb.Sp was not reduced in unloaded mice treated with r-Irisin and remained higher than 
in control mice (p < 0.01), as well as in reloaded mice (p < 0.05). Moreover, trabecular thickness (Tb.Th) was 
not affected by unloading conditions, however showed a tendency, even not significant, to increase by ~3.51% 
in unloaded mice treated with r-Irisin compared to control mice. Interestingly, reloaded mice also had a marked 
increase of Tb.Th (p < 0.01) compared to control mice, thus suggesting that the effect of r-Irisin on Tb.Th may 
mimic that of reloading activity. Furthermore, fractal dimension, which was reduced in unloaded mice compared 
to control mice (p < 0.05), returned to control level in unloaded mice treated with r-Irisin (p = 0.37) and, simi-
larly, in reloaded mice (p = 0.44) (Fig. 6).

We also investigated whether r-Irisin was able to retrieve bone loss in vertebral bodies during unloading 
(Fig. 7a). By analyzing L3-L4 vertebra, we found that BV/TV in unloaded mice treated with vehicle was dramat-
ically reduced by ~19.78% versus control mice (p < 0.05), whereas unloaded mice treated with r-Irisin displayed 
a fully recovered trabecular bone mass (p = 0.94). Likewise, reloaded mice had BV/TV similar to control mice 
(p = 0.58). The effect of r-Irisin on vertebral bone mass was mainly exerted on the thickness of trabeculae. In fact, 
the reduction of Tb.Th in unloaded mice treated with vehicle (p < 0.01 versus control mice), was rescued in mice 
treated with r-Irisin (p = 0.21 versus control mice), as well as in reloaded mice (p = 0.68 versus control mice) 
(Fig. 7a).

Knowing that absence of mechanical load induces bone loss primarily exacerbating bone resorption, we quan-
tified the number of osteoclasts (OCs) on trabecular bone. As shown in Fig. 7b, in unloaded mice treated with 
vehicle, OCs number per bone perimeter (OCs/BPm) was ~212% higher than in control mice (p < 0.05), whereas 
r-Irisin strongly reduced the number of OCs, although it remained higher than control (p > 0.05). Consistently, 
also reloading activity decreased the number of OCs with respect to unloaded mice treated with vehicle, but did 
not fully restore OCs number back to control level (Fig. 7b).

We also observed a ~74% reduction in the area of osteoid surface to bone surface (OS/BS) in unloaded mice 
treated with vehicle compared to control mice (p < 0.05), whereas in unloaded mice treated with r-Irisin a strong 
trend toward increased OS/BS was observed, albeit it was still lower than in control mice (p > 0.05). Conversely, 
reloading activity fully recovered the osteoid surface area to that of control mice (Fig. 7c).

Figure 6. Treatment with r-Irisin recovers bone loss in femurs from hindlimb-suspended mice. Representative 
microCT-generated section images and calculated cortical and trabecular parameters of femurs obtained 
from normal loading mice (Rest vehicle-inj), unloaded mice treated with vehicle or recombinant Irisin (first 
r-Irisin injection after 4 weeks of hindlimb suspension, at the dose of 100 µg kg−1 per week for 28 days) and 
reloaded mice (Reload veh-inj). Cortical bone parameters included bone mineral density (BMD) and cortical 
thickness (Ct.Th). Trabecular bone parameters included bone mineral density (BMD), bone volume/total 
volume (BV/TV), trabecular number (Tb.N), trabecular thickness (Tb.Th), trabecular separation (Tb Sp) 
and Fractal Dimension. Data are presented as mean ± SEM. n = 6–7 mice per group. All data were normally 
distributed according to the Shapiro-Wilk normality test and analyzed by one-way ANOVA and Bonferroni’s 
post hoc analysis. Cohen’s d values were measured for non-significant differences of results and can be found 
as Supplementary Table S1. *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001 versus Rest vehicle-injected mice. ^p ≤ 0.05, 
^^p ≤ 0.01, ^^^p ≤ 0.001 versus Unload vehicle-injected mice.

http://S1
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Discussion
The aim of our study was to determine the effects of recombinant Irisin on the musculoskeletal system of mice 
exposed to hind-limb unloading. Our results clearly show that r-Irisin treatment during four weeks of suspension 
strikingly acts on both cortical and trabecular BMD, whose disuse-induced decrease was prevented. Likewise, 
cortical and trabecular BMD were also recovered when r-Irisin was administered to mice after 4 weeks of sus-
pension, with developed bone loss. Moreover, at trabecular site, r-Irisin therapy was effective in preventing or 

Figure 7. Treatment with r-Irisin recovers bone loss in vertebrae from hindlimb-suspended mice. (a) Von 
Kossa-stained vertebral sections and trabecular bone parameters from normal loading mice (Rest vehicle-
inj), unloaded mice treated with vehicle or recombinant Irisin (first r-Irisin injection after 4 weeks of 
hindlimb suspension, at the dose of 100 µg kg−1 per week for 28 days) and reloaded mice (Reload vehicle-inj) 
(magnification: 2.5x). (b) Representative images of tartrate-resistant acid phosphatase-stained osteoclasts 
in vertebral sections, together with osteoclast counts per bone perimeter (BPm). (magnification: 40x). (c) 
Representative images of Goldner’s Masson Trichrome-stained vertebral sections (magnification: 10x) and 
photomicrograph of details taken at 40x, together with measurement of percentage of osteoid per bone surface 
(BS). n = 4–5 mice per group. Data are presented as mean ± SEM. All data were normally distributed according 
to the Shapiro-Wilk normality test and analyzed by one-way ANOVA and Bonferroni’s post hoc analysis. 
*p ≤ 0.05, **p ≤ 0.01 versus Rest vehicle-injected mice. ^p ≤ 0.05, ^^p ≤ 0.01 versus Unload vehicle-injected 
mice.
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restoring BV/TV decline in both protocols of suspension. Furthermore, we also show that r-Irisin prevented 
disuse-induced wasting of muscle mass, thus impeding the progression towards muscle atrophy.

The hind-limb suspension model is well accepted as ground-based analog to ascertain the effects of unloading 
conditions on the properties of the musculoskeletal system20. As humans forced to short- or long-term immobil-
ity, hind-limb suspended mice experience altered balance of muscle and bone metabolism, resulting in concomi-
tant loss of both tissues21, 22. In accordance with previous findings23–25, our µCT analysis on femurs from unloaded 
mice, revealed notable deterioration of both cortical and trabecular bone microarchitecture.

For the preventive protocol, r-Irisin was administered during hind-limb unloading, starting from the begin-
ning of suspension. This therapy was able to entirely prevent the decline of cortical BMD, whereas the loss of 
trabecular BMD, BV/TV and fractal dimension were partially prevented. Fractal dimension is an index of optimal 
micro-architectural complexity that indicates how irregular structures, such as trabeculae in the case of bone, 
tends to fill space. Specifically, under pathological conditions, trabecular shape and bone surfaces appear less 
regular and less complex than healthy bone26. Several studies reported that fractal dimension is lower in the 
osteoporotic population compared to healthy groups27–29 and it has been found positively correlated to BMD, 
indicating that evaluation of fractal dimension could be crucial for the diagnosis of osteoporosis30.

In healthy mice, r-Irisin did not influence cancellous bone of femurs, where the trabecular microarchitecture 
was already intact before treatment, as we already demonstrated for the tibia15. Conversely, the disuse condition 
affected the whole bone structure, with the major involvement of the trabecular compartment, which was instead 
protected by the action of Irisin.

In compliance with the curative protocol, to investigate whether Irisin was effective in recovering an already 
developed bone loss, r-Irisin was administered after four weeks of suspension and during the following four 
weeks of treatment mice were left suspended, Additionally, we also examined the efficacy of r-Irisin in com-
parison with reloading condition, in order to evaluate whether the Irisin-based therapy could mimic the 
action of re-ambulation. MicroCT analysis showed that loss of cortical and trabecular BMD, as well as BV/TV 
in unloaded mice were restored by r-Irisin therapy, as also observed in reloaded mice, clearly demonstrating a 
loading-mimetic activity of the myokine. However, despite most of similar actions observed between r-Irisin 
therapy and the re-ambulation, we found that cortical thickness was fully recovered only by reloading activity.

Despite a previous observation reporting that unloading has a greater effect on cortical compared to trabec-
ular bone21, several studies have shown that the bone reaction to unloading also involves a strong decrease in 
trabecular bone mass23–25. In agreement with these latter results, we observed trabecular BV/TV decline in femurs 
of mice kept unloaded either for 4 or 8 weeks, according to the two different intervention protocols. Loss of bone 
mass in vertebrae, however, did not occur after 4 weeks of suspension (date not shown), but only when mice were 
unloaded for 8 weeks. Remarkably, treatment with r-Irisin fully restored the trabecular bone mass in vertebrae. 
These results demonstrate that, in the presence of impaired bone mass, the therapeutic potential of Irisin occurs 
equally on both bone compartments.

As we previously demonstrated, the expression of sclerostin, one of the Wnt/β-catenin pathway inhibitors31, 32,  
was strongly down-regulated in long bone of Irisin-treated mice15. Sclerostin has been defined one of the key 
proteins involved in mechanical loading, since its expression is decreased by loading33 and SOST deficient hind-
limb unloading mice are resistant to bone loss34. Accordingly, here we found that sclerostin expression in long 
bones of unloaded mice was three-times higher than control mice, whereas its increase was blunted by r-Irisin 
treatment. At the same time, the expected increase in Rankl/Opg ratio observed in unloaded mice was maintained 
at control level by Irisin treatment that specifically attenuated unload-induced reduction in Opg. This modula-
tion of Opg expression may be exerted by Irisin as a direct effect on osteoblast precursors or through an indirect 
osteocyte-mediated action, since it is well known that osteocytes can modulate Rank-l and Opg expression in 
osteoblasts in order to control osteoclasts formation and activity35. Because osteocytes are relatively difficult to 
isolate and culture in vitro, a major limitation of our study is that we cannot ascertain if Irisin directly affects these 
cells, as we previously demonstrated for osteoblasts, which are a direct target of Irisin via a receptor-mediated 
mechanism15. However, since it has been shown that the Rankl/Opg balance is finely tuned by sclerostin23, we 
speculate that, if in unloading conditions Opg and Sclerostin are both maintained at control levels by Irisin, these 
two effects may be linked together and both contribute to the protection against bone loss.

In vivo, r-Irisin treatment decreased OC number in mice kept under normal load15. Since it is well-known 
that bone loss caused by unloading involves increase in OC formation23–25, we sought to determine if r-Irisin 
was effective in inhibiting this effect. Our results revealed that the expected three-fold change increase in OC 
number, observed in trabecular bone of unloaded mice, was significantly reduced by r-Irisin. In parallel, the 
unload-induced reduction of new osteoid deposition was significantly increased by r-Irisin, even though it is not 
restored to the level of normal loading mice. Overall, the combined effect of r-Irisin in stimulating new bone dep-
osition and inhibiting bone resorption, resulted in an unaffected trabecular bone mass of unloaded mice treated 
with the myokine.

Furthermore, we also investigated whether the muscle atrophy, occurring under mechanical unloading, is 
prevented by r-Irisin treatment. Accumulating evidence, covering a large number of spaceflight and hind-limb 
suspension experiments, demonstrated that a rapid loss in muscle weight and myofibrillar protein content occurs 
during the first 7 days of unloading and that, after this period, there is a much slower and gradual decline of 
mass and protein content in skeletal muscle36. Therefore, we investigated the effect of Irisin on muscle atrophy 
only in mice subjected to the shorter period of suspension. Our results clearly demonstrated that treatment with 
r-Irisin totally prevented muscle weight loss and decrease in fiber size. In agreement with the reduction of the 
mitochondrial content that often accompanies muscle wasting37, we observed a decreased mitochondria density 
and a disorganized mitochondrial network in muscle fibers from unloaded mice in comparison to control mice. 
In agreement with previous in vitro findings19, we observed mitochondrial biogenesis in muscle of Irisin-treated 
mice. Furthermore, we found increased protein levels of COX IV and mRNA levels of Nrf-1 and Tfam, supporting 
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increased functional capability of mitochondria. However, mitochondrial function needs to be further inves-
tigated. Accordingly, we observed in vivo that Irisin induced increased mitochondrial density and size, as well 
as a better organized distribution, also confirmed by an increase of VDAC positive muscle fibers38. Although 
we previously showed that treatment with r-Irisin increased the expression of the Irisin precursor, FNDC5, in 
muscle fibers of young, healthy mice15, we did not observe any changes in the number of FNDC5 positive fibers 
in unloaded mice treated with r-Irisin, either compared to vehicle-treated unloaded mice or to normal mice. In 
addition, no change in ATP synthase positive fibers was observed between the three groups of mice. However, 
worth mentioning is the result that co-localization of fibers positive for both FNDC5 and ATP synthase was 
reduced in unloaded mice, whereas treatment with r-Irisin preserved the same co-localization as in control mice, 
indicating a possible correlation between the autocrine-induced FNDC5/Irisin expression pattern and the mito-
chondrial content in skeletal muscle.

The control of the protein balance in skeletal muscle is finely controlled by a series of events regulating new 
protein synthesis versus protein degradation39. It is well-known that skeletal unloading is an atrophic stimulus 
that leads to a decrease of protein synthesis and an increase of protein degradation. MyHC is the most abundant 
protein expressed in skeletal muscle and its function is to regulate the contractile process together with actin 
protein40. We showed here that 4 weeks of unloading activity induced a reduction of the expression of both 
MyHC type I and MyHC type II. However, the loss of MyHC II expression was completely prevented by r-Irisin 
treatment. We also explored the expression of the different subtypes of myosin type II: MyHC IIα, MyHC IIx 
and MyHC IIβ, which are classified in this sequence from the slowest to the fastest isoform of myosin type II. 
Earlier studies on skeletal muscle plasticity have also focused on the different expression of subtypes of MyHC 
gene family, from which depend the remodelling of the muscle phenotype40–42. For instance, it has been showed 
that high-frequency electrical stimulation can generate a slow-to-fast switch in the direction I → IIα → IIx → IIβ, 
whereas tonic low-frequency electrical stimulation can induce a fast-to-slow switch in the opposite direction 
from IIβ → IIx → IIα → to I. However, differences between muscle types may limit the range of possible adapta-
tions and the time of stimulations can also be crucial in fiber-type transitions41. Our findings show that, although 
r-Irisin did not prevent the MyHC I decrease, it increased the expression of MyHC IIx to a level higher than in 
control mice. The increase of this subtype of MyHC type II might indicate a fast-to-slow switch, as described 
above. Therefore, this suggests that Irisin, not being able to preserve the loss of content in MyHC type I, could 
stimulate the transition of fast-type fibers towards the slow phenotype, as countermeasure to mitigate the reduc-
tion of slow fibers caused by unloaded-induced muscular atrophy. Although Irisin was found to increase mito-
chondrial biogenesis and, therefore, high oxidative capacity that primarily occurs in slow muscle fibers, one 
limitation of our study is that we analysed only the vastus lateralis, which is a type of muscle mainly composed by 
fast twitch fibers42. Future studies, designated to analyse the effect of Irisin on different muscle types, could reveal 
if there are differences in the response to the myokine depending on the type of muscle examined, or even on the 
timing of unloading. Thus far, several studies highlighted the response of type I fibers to unloading, but less data 
were reported on type II fibers43, 44. Adapting to the disuse of the contractile function seems to be variable in type 
II fibers, but this variability may be dependent on differences between subjects examined, on different types of 
muscle analyzed, and different methods and time used to simulate disuse45. Most of the studies on hind-limb sus-
pended mice were based on short-term (7–14 days) unloading protocols, in which no alteration of type II fibers 
was observed. Zhong and colleagues45 demonstrated that type II fibers from semimembranosus muscle were also 
sensitive to the removal of weight bearing, when it was applied for a longer period (21 days).

In our hand, we found that, among subtypes of MyHC II, MyHC IIx is strongly decreased in vastus lateralis 
of mice subjected to 4 weeks of weight bearing removal, whereas MyHC IIβ was not affected. To our knowledge, 
this is the first evidence reporting that vastus lateralis, undergone unloading, was characterized by a ~60% reduc-
tion in MyHC IIx expression, and that this decline, not only was completely inhibited by Irisin, but the myokine 
up-regulated the expression of MyHC IIx to a higher level than in normal mice.

Overall our data reveal for the first time that r-Irisin treatment ameliorates bone loss and muscle atrophy in 
unloading mice. For long time, there has been controversy regarding Irisin in humans but many of these raised 
doubts have been dispelled by the recent study of Jedrychowski and colleagues46. Our results may support a 
promising clinical strategy for the prevention and treatment of both osteoporosis and sarcopenia, particularly 
applicable to those patients who cannot perform physical activity, as occurs during reduced mobility. Moreover, 
an Irisin-based therapy might also represent a countermeasure for astronauts that, exposed to microgravity dur-
ing space flight missions, often encounter a severe bone and muscle loss.

Methods
Experimental design and animal model. 2-months-old C57BL6 male mice (n = 64) were randomly 
assigned to eight groups: three groups of control mice (2 groups/preventive protocol and 1 group/curative pro-
tocol) and five groups of hind-limb suspended mice (2 groups/preventive protocol and 3 groups/curative pro-
tocol) which were subjected to the tail suspension procedure, according to recommendations by Wronski and 
Morey-Holton47. The height of the mice hindquarters was adjusted to prevent any contact of the hind limbs with 
the cage floor, resulting in approximately a 30° head-down tilt. The forelimbs of the animals maintained contact 
with the cage bottom, allowing the mice full access to the entire cage. Each mouse was singly housed, maintained 
under standard conditions on a 12/12 hour light/dark cycle and with access to water and regular chow diet ad 
libitum (Harlan Teklad 2019, SDS, England). Hind-limb suspended mice were treated on the basis of two different 
protocols. For the preventive protocol, hind-limb suspended mice were treated with vehicle (physiologic water 
sterilized by 0.22 μ filtration) (n = 8) or with 100 µg kg−1 r-Irisin (n = 8) by i.p injection once a week for 4 weeks. 
r-Irisin was provided by Adipogen International (San Diego, USA). Two groups of control mice (n = 8/group) 
were also singly housed and one group was treated with vehicle (Rest vehicle-injected mice) and the other group 
was treated with 100 µg kg−1 r-Irisin (Rest Irisin-injected mice) by i.p injection once a week for 4 weeks. For the 
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curative protocol, hind-limb suspended mice were left untreated for 4 weeks and then treated with vehicle (n = 8) 
or with 100 µg kg−1 r-Irisin (n = 8) by i.p injection once a week for the following 4 weeks of suspension. The fifth 
group consisted of mice (n = 8) that were hind-limb suspended for 4 weeks and then subjected to reload, which 
involved normal cage activity, and treated with vehicle by i.p injection (Reload vehicle-injected mice) once a week 
for the following four weeks. Normal weight-bearing mice (n = 8) were treated with vehicle by i.p injection once 
a week during the last 4 weeks (Rest vehicle-injected mice) of the curative protocol. Mice were weighed once a 
week and at the end of the experimental procedure were euthanized and their tissues were surgically excised. 
Right femurs were harvested and employed for µCT analysis. Left femurs and tibia were subjected to bone mar-
row flushing and then stored in liquid nitrogen for western blot and real-time PCR analysis. The femurs and the 
tibia were cut longitudinally and the two halves have been mixed and used one pair (half femur and half tibia) for 
western blot and the other pair for real-time PCR analysis. Lumbar vertebrae (from L1 to L5) were dissected, fixed 
with 4% (vol/vol) paraformaldehyde for 18 hours at 4 °C and processed for histological analysis. Bilateral vastus 
lateralis muscles were excised from the quadriceps and processed for further analysis. This animal interventional 
study is in accordance with the European Law Implementation of Directive 2010/63/EU and all experimental 
protocols were reviewed and approved by the Veterinary Department of the Italian Ministry of Health (Project 
522-2016PR).

Contact radiography. Long bones were X-rayed by using contact radiography (Vista Scan Combi Durr 
Dental AG, Bietigheim-Bissingen). Scans were obtained by using a setting of 60 kV, 8 mA and 2.5 sec exposure 
time. The developed X-rays were scanned into a personal computer for image acquisition. No direct measures 
were performed on the images.

Microcomputed tomography analysis of femurs. MicroCT (μCT) scanning was performed to meas-
ure morphological indices of metaphyseal regions of femurs. Bone samples were rotated around their long axes 
and images were acquired using Bruker Skyscan 1172 (Kontich, Belgium) with the following parameters: pixel 
size = 6 μm3; peak tube potential = 59 kV; X-ray intensity = 167 μA; 0.4° rotation step. Raw images were recon-
structed by the SkyScan reconstruction software (NRecon) to 3-dimensional cross-sectional image data sets using 
a 3-dimensional cone beam algorithm. Structural indices were calculated on reconstructed images using the 
Skyscan CT Analyzer (CTAn) software (Bruker). Cortical and trabecular bone were separated using a custom 
processing algorithm in CTAn, based on the different thicknesses of the structures. Cortical bone was analysed 
by a region of 150 slices, starting 9 mm distal to the metaphysis. Cortical parameters included BMD and cortical 
thickness (Ct.Th). Trabecular bone was analysed in the proximal metaphysis region starting just distal to the met-
aphysis and continued distally for 200 slices. Trabecular parameters included BMD, bone volume fraction (BV/
TV), number (Tb.N), thickness (Tb.Th), separation (Tb.Sp) and Fractal dimension.

Histological analysis of vertebrae. Lumbar vertebrae were embedded with MMA after dehydration and 
the plastic sections were cut by a standard microtome (RM-2155 Leica, Heidelberg, Germany) into 7 μm for von 
Kossa staining and 5 μm for Tartrate-resistant acid phosphatase (TRAP) and Goldner’s Masson Trichrome stain-
ing. The sections were stained by the von Kossa silver impregnation with van Gieson counterstained method to 
determine cancellous bone volume fraction (BV/TV %), trabecular number (Tb.N, 1/mm) trabecular thickness 
(Tb.Th, mm) and trabecular separation (Tb.Sp, mm) on L3-L4 vertebrae. For the analysis of osteoclasts (osteo-
clast number per bone perimeter, OCs/BPm), bone sections were incubated in TRAP staining solution and then 
counterstained with methyl green. The Goldner’s Masson trichrome stain was performed for the analysis of new 
osteoid formation. Sections were evaluated under brightfield microscopy after Goldner’s Trichrome staining to 
determine static parameters of bone surface (BS) and osteoid surface (OS). Histological sections were viewed 
under a microscope (Leica) using a 40x objective lens and analyzed by using Image-J software48, 49.

Histological analysis of muscle. Vastus lateralis muscles were excised from the quadriceps, fixed and 
embedded in paraffin. 5 µm thick histological sections were cut and stained with hematoxylin and eosin (H&E). 
All observations were performed with a Nikon Eclipse 80i light microscope (Nikon). The CSA was measured on 
H&E stained slides at magnification of 20x by using the NIS-Element BR 4.10.00 software.

Transmission Electron Microscopy (TEM). Vastus lateralis muscle fragments were fixed in 2% 
glutaraldheyde-2% paraformaldehyde in phosphate buffer (PB) for 4 h at room temperature, post fixed in 1% 
osmium tetroxide, and embedded in an Epon-Araldite mixture. Semithin sections (2 μm) were stained with tolu-
idine blue. Thin sections were obtained with an MT-X ultratome (RMC; Tucson, AZ), stained with lead citrate, 
and examined with a CM10 transmission electron microscope (Philips; Eindhoven, The Netherlands).

Peroxidase Immunohistochemistry. Immunohistochemistry was performed on 3 μm-thick 
paraffin-embedded sections of vastus lateralis muscle samples. After dewaxing, antigen retrieval was achieved 
with a pressure cooker treatment (90 °C for 20 min) by soaking sections in a sodium citrate buffer 0.01 M, pH 
6.0. After a thorough rinse in phosphate buffered saline (PBS), sections were reacted with 0.3% H2O2 (in PBS; 
30 min) to block endogenous peroxidase, rinsed with PBS and incubated in a 3% normal goat blocking solu-
tion (in PBS; 60 min). Then, they were incubated with the polyclonal rabbit anti-VDAC primary antibody (Cell 
Signaling Technology) overnight at 4 °C. After a thorough rinse in PBS, sections were incubated in a 1:200 v/v 
biotinylated goat anti-rabbit IgG secondary antibody solution (Vector Laboratories, Burlingame, CA; in PBS; 
30 min). Histochemical reactions were performed using Vectastain ABC Kit (Vector Laboratories) and Sigma 
Fast 3,3′-diaminobenzidine (Sigma-Aldrich) as the substrate. Sections were finally counterstained with hema-
toxylin, dehydrated and mounted in Entellan. Staining was never observed when the primary antibody was omit-
ted. For morphometric analysis, immunostained tissue sections were observed with a Nikon Eclipse E800 light 
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microscope using a 40x objective, and digital images were captured with a DXM 1200 camera. The percentages of 
muscle fiber areas occupied by VDAC protein stain (5 high power fields for each section) were determined by the 
Nikon Lucia IMAGE (v. 4.61) image analysis software. Results are given as mean ± SEM.

Immunofluorescence. For immunofluorescence, 5 μm thick paraffin sections of vastus lateralis were 
re-hydrated and antigens were retrieved. Sections were then permeabilized with Triton X-100 0.5% in PBS for 
10 minutes at RT and non-specific interactions were blocked with 10% HS in PBS for 30 minutes at RT. After 
washing in PBS tissues were incubated with primary antibody against FNDC5 (Abcam), ATPsynthase (Invitrogen 
Molecular Probes), Laminin (Santa Cruz), MyoD (Dako) and Pax7 (R&D Systems). Fluorescent-labeled second-
ary antibodies were anti-mouse Alexa Fluor®-555 and Alexa Fluor®-594; anti-rabbit Alexa Fluor®-488 and Alexa 
Fluor®-594; anti-rat Alexa Fluor®-568 (Thermo Fisher Scientific). Nuclei were counterstained with fluorescent 
mounting medium plus 100 ng/ml 4′,6-diamidino-2-phenylindole (DAPI) (Sigma-Aldrich). At least 5 high power 
fields were analyzed for each section. Staining was never observed when the primary antibody was omitted. 
Percentage of positive fibers were calculated by using the NIS-Element BR 4.10.00 software.

Ex vivo primary cell cultures. Bone marrow was flushed from mouse femurs and tibia and cultured in 
α-MEM (Life Technologies) supplemented with 10% (vol/vol) FBS (Gibco, Life Technologies) and 1% peni-
cillin/streptomycin (Life Technologies). For osteogenic differentiation, bone marrow cells were cultured with 
α-MEM/10% FBS, supplemented with 50 μg/mL ascorbic acid and 10−2 M β-glycerophosphate. At day 10, 
cells were fixed in 3.7% (vol/vol) formaldehyde for 5 minutes and subjected to alkaline phosphatase (ALP) 
staining. Image J software was used to calculate area of ALP+ colony forming unit (Cfu-f). For OC differen-
tiation, bone marrow cells were cultured with α-MEM/10% FBS, supplemented with 5 ng/mL of macrophage 
colony-stimulating factor (MCSF; R&D system) and 3 ng/ml of receptor activator of nuclear factor kappa-B 
ligand (RANK-L; R&D system). At day 7, cells were fixed in 3.7% (vol/vol) formaldehyde for 5 minutes and 
stained for TRAP. TRAP+ cells with more than three nuclei were counted as OCs.

Real Time-PCR. Total RNA from bone and muscle tissues and osteoblast or osteoclast cultures was extracted 
using spin columns (RNeasy, Qiagen) according to the manufacturer’s instructions and reverse transcription 
performed using iScript Reverse Transcription Supermix (Bio-Rad). The resulting cDNA (20 ng) was subjected to 
quantitative PCR (qPCR) using the SsoFast EvaGreen Supermix (Bio-Rad) on an iCycler iQ5 Cromo4 (Bio-Rad). 
Each transcript was assayed in triplicate and cDNA was normalized to murine Glyceraldehyde 3-phosphate dehy-
drogenase (GAPDH) and β-Actin. Quantitative measures were obtained using the ΔΔCT method.

Western Blotting. 15 μg of protein from bone and muscle tissues were subjected to 12% SDS-PAGE and 
subsequently transferred to nitrocellulose membranes (Hybond, Amersham). The blots were probed using pri-
mary antibody anti-Sclerostin (Abcam), anti-OxPhos Complex IV subunit I (Invitrogen) and anti-MyHC II 
(Abcam) and IRDye-labeled secondary antibodies (680/800 CW) (LI-COR Biosciences). For immunodetection, 
the Odyssey infrared imaging system was utilized (LI-COR Corp., Lincoln, NE). All data were normalized to 
background and loading controls.

Statistical analysis. One-way analysis of variance (ANOVA) was used for evaluating the existence of dif-
ferences among the groups. When significant difference was detected, Bonferroni’s post hoc analysis was used to 
determine the significance between every two groups. Values of p < 0.05 were considered statistically significant. 
Cohen’s d values were measured for non-significant differences of results of Figs 1 and 6 and they can be found as 
Supplementary Table S1.
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