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Small heterodimer partner interacts with NLRP3
and negatively regulates activation of the NLRP3
inflammasome
Chul-Su Yang1,2,3, Jwa-Jin Kim1,2,4, Tae Sung Kim1,2, Phil Young Lee5, Soo Yeon Kim1,2, Hye-Mi Lee1,2,

Dong-Min Shin1,2, Loi T. Nguyen6, Moo-Seung Lee6, Hyo Sun Jin1,2, Kwang-Kyu Kim7, Chul-Ho Lee8,

Myung Hee Kim6, Sung Goo Park5, Jin-Man Kim2,9, Hueng-Sik Choi10 & Eun-Kyeong Jo1,2

Excessive activation of the NLRP3 inflammasome results in damaging inflammation, yet the

regulators of this process remain poorly defined. Herein, we show that the orphan nuclear

receptor small heterodimer partner (SHP) is a negative regulator of NLRP3 inflammasome

activation. NLRP3 inflammasome activation leads to an interaction between SHP and NLRP3,

proteins that are both recruited to mitochondria. Overexpression of SHP competitively

inhibits binding of NLRP3 to apoptosis-associated speck-like protein containing a CARD

(ASC). SHP deficiency results in increased secretion of proinflammatory cytokines IL-1b and

IL-18, and excessive pathologic responses typically observed in mouse models of kidney

tubular necrosis and peritoneal gout. Notably, the loss of SHP results in accumulation of

damaged mitochondria and a sustained interaction between NLRP3 and ASC in the

endoplasmic reticulum. These data are suggestive of a role for SHP in controlling NLRP3

inflammasome activation through a mechanism involving interaction with NLRP3 and

maintenance of mitochondrial homeostasis.
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T
he inflammasome is a large multimeric protein complex
composed of nucleotide-binding, oligomerization domain
(NOD)-like receptor (NLR) proteins and adaptors that

triggers caspase-1 activation, leading to maturation of the
proinflammatory cytokines interleukin (IL)-1b and IL-18
(ref. 1). Among a number of inflammasomes, the NLR family,
pyrin domain-containing 3 (NLRP3; also known as cryopyrin,
CIAS-1, Pypaf-1 or CLR1.1) inflammasome is the best
characterized. Although inflammasome activation plays a key
role in host defence against a variety of pathogens, its excessive and
uncontrolled activation may be damaging to the host, resulting in
autoinflammatory and autoimmune diseases. It is therefore
essential that inflammasome activity is tightly controlled1;
however, the negative and counter-regulatory mechanisms of
NLRP3 inflammasome activation are poorly understood.

Small heterodimer partner (SHP; also known as NR0B2) is an
orphan member of the nuclear receptor (NR) superfamily. It has a
unique structure that lacks the classical DNA-binding domain but
contains a putative ligand-binding domain2,3. Previous work over
the past 20 years has established a role for SHP as a corepressor of
various genes involved in metabolic regulation, particularly those
implicated in the homeostasis of glucose, bile acid and lipid
metabolism4. However, its function in immune regulation is
largely uncharacterized. Our previous work demonstrates that
SHP plays a role in the regulation of Toll-like receptor (TLR)-
induced innate and inflammatory responses through a biphasic
interaction with cytoplasmic partners, including TRAF6 and
NF-kB p65 in innate immune cells5,6.

Here we report that SHP plays a critical negative regulator of
NLRP3 inflammasome activation through a physical and
functional interaction with NLRP3. We found that SHP
competitively inhibited the NLRP3 binding with ASC, to
efficiently block the assembly of NLRP3 inflammasome complex.
Using in vivo models of kidney tubular necrosis and peritoneal
gout, we showed that SHP is essentially involved in controlling an
excessive secretion of IL-1b and IL-18, as well as pathologic
responses. We also showed that SHP translocated to mitochon-
dria and dampened mitochondrial reactive oxygen species (ROS)
generation and mitochondrial damage during NLRP3 inflamma-
some activation. Moreover, SHP deficiency led to a sustained
interaction of NLRP3 with apoptosis-associated speck-like
protein containing a CARD (ASC) in the endoplasmic reticulum.
Our findings demonstrate that SHP plays a fine-tuning role in
activation of the NLRP3 inflammasome through a direct binding
with NLRP3 and elaborating mitochondrial quality control to
prevent excessive inflammatory responses.

Results
SHP interaction with NLRP3 during inflammasome activation.
To establish a role for SHP in the NLRP3 inflammasome
pathway, we investigated whether SHP interacts with molecules
involved in NLRP3 inflammasome activation. SHP complexes
were subjected to co-immunoprecipitation (co-IP) from bone
marrow-derived macrophages (BMDMs) that were primed with
lipopolysaccharide (LPS) and then stimulated with adenosine
triphosphate (ATP). Purified SHP complexes were then subjected
to mass spectrometry analysis, which revealed that NLRP3 was
the 103-kDa protein associated with SHP (Fig. 1a). Endogenous
co-IP studies using an anti-SHP antibody demonstrated that SHP
interacts strongly, but temporarily (from 15min to 1 h), with
endogenous NLRP3, but not with apoptosis-associated speck-like
protein containing a CARD (ASC), upon NLRP3 stimulation
(Fig. 1b). Furthermore, SHP co-localized with NLRP3, mainly in
perinuclear regions, in LPS-primed BMDMs 30min after ATP
stimulation (Fig. 1c). Similar results, confirming an interaction

between NLRP3 and SHP after NLRP3 inflammasome activation,
were obtained using human THP-1 cells (Supplementary
Fig. 1a,b).

Structurally, NLRP3 contains a pyrin domain (PYD) at its
N terminus, a NACHT domain in the centre, and a carboxy
(C)-terminal leucine-rich repeat (LRR) domain7. The inflamma-
some adaptor ASC interacts with upstream inflammasome
sensor molecules through its PYD8,9. During inflammasome
activation, a homotypic interaction between ASC and NLRP3
PYDs is necessary for the assembly of a large protein
complex consisting of ASC multimers10,11. Further mapping
studies using truncated mutants of SHP and NLRP3 (Fig. 1d)
showed that the PYD of NLRP3 is required for interaction with
the amino (N)-terminal portion of SHP in HEK293T cells
(Fig. 1e,f). A GST pull-down assay also showed that SHP
specifically and directly binds to the PYD of NLRP3
(Supplementary Fig. 2). Moreover, mutation of SHP at a site
linked to SHP stability in the bile acid signalling pathway (S26A
or S26D; ref. 12) was not needed for interaction of SHP with
NLRP3 (Fig. 1g). We next used truncated mutants of SHP to
identify the N-terminal site responsible for the interaction with
NLPR3 (Fig. 1h). The SHP–NLRP3 association was detected in
immunoprecipitates from two mutants (D2–10 and D2–19;
Fig. 1i), but was with all other SHP N-terminal mutants (D2–
28, D2–37 and D2–46; Fig. 1i). It is therefore likely that the 20–46
region of the SHP N-terminus is involved in PYD binding
between NLRP3 and SHP.

Competition assays using SHP constructs demonstrated that
increased amounts of SHP diminished the interaction between
NLRP3 and ASC in HEK293T cells (Fig. 1j,k). Moreover, we
treated LPS-primed BMDMs with the SHP-inducing drugs
fenofibrate (a fibrate class drug for the treatment of hypercho-
lesterolaemia13) and AICAR (5-amino-1-b-D-ribofuranosyl-
imidazole-4-carboxamide (also known as ZMP), an analogue of
AMP14). Both the drugs were reported to induce SHP expression
through 50 adenosine monophosphate-activated protein kinase
activation4,6 and inhibited the interaction between NLRP3 and
ASC in macrophages in response to NLRP3 inflammasome
activation (Supplementary Fig. 3a,b). However, increased
amounts of ASC did not affect the association of NLRP3 with
SHP (Supplementary Fig. 4), suggesting that this association is
upstream of the interaction between NLRP3 and ASC. The N
terminus of the NLRP3 PYD is also required for direct binding to
MAVS, another inflammasome adaptor15. Thus, we speculate
that binding of SHP to the pyrin domain of NLRP3 reinforces the
capacity of SHP to compete with ASC and MAVS.

SHP inhibits IL-1b maturation and caspase-1 activation. We
showed previously that SHP deficiency augments the systemic
inflammatory responses induced by LPS5. To investigate the role
of SHP in regulation of inflammasome activation, BMDMs from
SHPþ /þ and SHP� /� mice were stimulated with NLRP3
activators. In response to various NLRP3 inflammasome
activators (ATP, monosodium urate (MSU) crystals, nigericin,
poly I:C and dextran sodium sulfate), SHP-deficient BMDMs
secreted higher levels of IL-1b and IL-18 than WT BMDMs
(Fig. 2a–c and Supplementary Fig. 5), indicating that SHP acts as
a negative regulator of NLRP3-dependent IL-1b secretion.
Consistent with these results, the caspase-1 activation and
IL-1b maturation observed in response to various NLRP3
inflammasome-activating stimuli were significantly increased in
SHP-deficient BMDMs (Fig. 2d,e).

It is generally accepted that at least two signals (Signals 1
and 2) are required for activation of the NLRP3 inflammasome.
Signal 1, a priming signal for NLRP3 inflammasome activation, is
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provided by pattern recognition receptors or cytokine receptors to
promote NF-kB activation and increased protein expression of
NLRP3. Signal 2 can be derived from danger signals, including
phagolysosomal damage, mitochondrial ROS production, and
induction of transmembrane ion fluxes, all of which are essential
for assembly of the NLRP3 inflammasome complex16,17. We
found that TNF-a levels were higher in SHP-deficient cells
compared with WT cells (Fig. 2a–c and Supplementary Fig. 5a
and b). Moreover, SHP deficiency led to increased induction of
pro-IL-1b protein levels (Fig. 2d,e).

SHP inhibits the Signal 2 activation of NLRP3 inflammasome.
The data above suggested that a simple comparison of
inflammatory cytokine production between SHP WT and KO
BMDMs is not sufficient for dissecting the function of SHP in
controlling Signals 1 and 2 during inflammasome activation. We
thus developed other approaches to demonstrating a specific role
for SHP in the regulation of Signal 2 activation of the
NLRP3 inflammasome. For this, we first primed macrophages
with LPS, and then treated them with a known pharmacological
inducer of SHP protein (fenofibrate or recombinant
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Figure 1 | SHP interacts with NLRP3 during inflammasome activation. (a) Small heterodimer partner (SHP) complexes purified from lipopolysaccharide

(LPS)-primed bone marrow-derived macrophages (BMDMs) with or without adenosine triphosphate (ATP, 1mM) stimulation were subjected to mass

spectrometry analysis. Red letters indicate the peptides identified. (b) Lipopolysaccharide (LPS)-primed BMDMs were stimulated with ATP for the indicated

durations, and subjected to co-immunoprecipitation (co-IP) with antibodies for SHP (left) or NOD-like receptor family, pyrin domain-containing 3 (NLRP3;

right), followed by immunoblotting (IB) with antibodies for NLRP3, apoptosis-associated speck-like protein containing a carboxy-terminal CARD (ASC),

SHP and actin. (c) LPS-primed BMDMs from SHPþ/þ and SHP�/� mice were stimulated with ATP for 30min, fixed, immunostained with antibodies for SHP

(Alexa 488) and NLRP3 (Alexa 568), and counterstained with DAPI (blue). Upper immunofluorescence images are representative of three independent

replicates; scale bar, 10mm. (d) Schematic diagram of the structures of SHP (Left) and NLRP3 (Right). (e–g) 293T cells were co-transfected with a control

vector, Flag-NLRP3 or truncated mutants (DPYD, DNACHT, DLRR), together with V5-SHP or its mutants (N-terminal or C-terminal). Cells were subjected to

co-IP with antibodies for V5 (e) or Flag (f,g), followed by IB with antibodies for Flag or V5. (h) Schematic diagram of N-terminal deletions of SHP structure.

‘--’ indicates a deleted sequence. (i) 293Tcells were co-transfected with the indicated constructs, and subjected to co-IP with anti-Flag, followed by IB analysis

with antibodies for GFP or Flag. (j,k) 293Tcells were co-transfected with Flag-NLRP3 or AU1-ASC, together with increasing amounts of V5-SHP, and subjected

to co-IP with antibodies for Flag (j) or AU1 (k), followed by IB analysis with antibodies for Flag, AU1 or V5. Data are representative of at least three

independent experiments (a–c,e–g and i–k). Protein levels in cell lysates were determined by IB analysis (e–g and i–k). U, untreated control.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms7115 ARTICLE

NATURE COMMUNICATIONS | 6:6115 | DOI: 10.1038/ncomms7115 | www.nature.com/naturecommunications 3

& 2015 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


macrophage-stimulating protein (MSP; the ligand of RON
receptor tyrosine kinase)4) just before ATP or nigericin
stimulation (Fig. 3 and Supplementary Fig. 3). This procedure
did not affect pro-IL-1b levels or NLRP3 expression in LPS-
primed cells. We next investigated whether SHP efficiently
inhibited the IL-1bmaturation and caspase-1 cleavage induced by
ATP or nigericin stimulation. Importantly, in this experimental
setting, SHP induction did not affect pro-IL-1b and NLRP3
expression levels, but abrogated IL-1b maturation and caspase-1
activation in response to NLRP3 activator treatment (Fig. 3a,c
and Supplementary Fig. 3a,b). In addition, treatment of
macrophages with increased amounts of fenofibrate or MSP led
to dose-dependent inhibition of IL-1b and IL-18 in response to
ATP stimulation, but did not attenuate TNF-a and IL-8
production (Fig. 3b,d). Together, these data provide evidence
that SHP is an essential negative regulator of IL-1b maturation
and caspase-1 activation in response to NLRP3 inflammasome-
activating stimuli.

SHP negatively regulates the NLRP3 inflammasome in vivo.
Following on from the in vitro findings concerning NLRP3
inflammasome modulation by SHP, we investigated the reg-
ulatory role of SHP in NLRP3 inflammasome activation in vivo.
SHPþ /þ and SHP� /� mice were subjected to folic acid-induced
acute tubular necrosis (ATN)15. Within 4 days of folic acid
injection, 50% of the SHPþ /þ mice died (Fig. 4a). Fenofibrate-
treated SHPþ /þ mice showed significantly enhanced survival
compared with solvent-treated controls. In SHP� /� mice,
treatment with folic acid dramatically accelerated and
exacerbated morbidity, leading to death within 3 days, an effect
not rescued by treatment with fenofibrate (Fig. 4a). Consistent
with the survival rate data, weight loss (Fig. 4b), caspase-1

activation and IL-1b maturation (Fig. 4c), and expression of
IL-1b and IL-18 (Fig. 4d) in kidney homogenates were all
significantly decreased in fenofibrate-treated SHPþ /þ mice. In
SHP� /� mice, however, these effects were not ameliorated by
fenofibrate treatment (Fig. 4b–d).

Examination of renal pathology in mice subjected to folic
acid-induced ATN revealed that, compared with SHPþ /þ mice,
SHP� /� mice showed an increased incidence of pathological
hallmarks, including evidence of tubular necrosis, flattening
of the tubular epithelium, tubular dilatation, tubular cast
formation and loss of tubular cell nuclei (Fig. 4e). Although
fenofibrate treatment significantly inhibited tubulointerstitial
neutrophil infiltration and IL-1b expression in WT mice, this
effect could not be replicated in SHP� /� mice (Fig. 4f,g).
Importantly, fenofibrate treatment of SHPþ /þ mice, but
not SHP� /� mice, significantly improved renal pathological
responses, neutrophil infiltration and IL-1b expression
(Fig. 4e–g). These results indicate that SHP is beneficial for
ameliorating in vivo inflammatory responses induced by NLRP3
inflammasome activation.

SHPþ /þ and SHP� /� mice were also subjected to MSU
crystal-induced peritonitis, a murine model of gout18. Six hours
after in vivo administration of MSU crystals, IL-1b and IL-18
levels were significantly increased in cell-free peritoneal exudates
from SHP� /� mice, compared with those from SHPþ /þ

mice (Supplementary Fig. 6). We further examined the effect
of MSP treatment on peritoneal cytokine generation in this
model. MSP treatment of SHPþ /þ mice decreased peritoneal
secretion of IL-1b and IL-18, but this effect could not be
replicated in SHP� /� mice (Supplementary Fig. 6). These
data collectively suggest a negative regulatory role for SHP in
NLRP3 inflammasome activation in the context of in vivo
inflammation models.
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SHP is required for mitochondrial translocation of NLRP3.
Assembly of the NLRP3 inflammasome requires recruitment of
NLRP3 to mitochondria in the perinuclear region, leading to
increased co-localization of ASC and NLRP3 (refs 15,19,20). It
was also reported that SHP is recruited to mitochondria and
regulates mitochondrial function2,21. To investigate the
intracellular distribution and interaction of SHP with
components of NLRP3 inflammasomes in macrophages, we
performed subcellular fractionation, followed by co-IP and
western blotting analysis. Notably, NLRP3 inflammasome
stimulation led to the translocation of SHP and NLRP3 to the
mitochondrial fraction (Fig. 5a). The analysis of confocal
microscopy data also supported mitochondrial translocation of
SHP after NLRP3 inflammasome activation (Fig. 5b). NLRP3
inflammasome stimulation induced sequential interaction of
NLRP3 with SHP and then ASC in the mitochondrial fraction
in both WT macrophages and THP-1 cells (Fig. 5a and
Supplementary Fig. 7, respectively). It was also noted that SHP-
deficient macrophages showed increased interaction between
NLRP3 and ASC in the cytosolic fraction after NLRP3
inflammasome stimulation (Fig. 5a and Supplementary Fig. 8).

We next examined mitochondrial morphology and function in
SHPþ /þ and SHP� /� macrophages after NLRP3 inflamma-
some activation. Ultrastructural findings showed that the number
of swollen and dilated mitochondria with disrupted cristae was
increased to a greater extent by inflammasome activation in

SHP� /� macrophages compared with SHPþ /þ macrophages
(Fig. 6a). In addition, LPS-primed SHP� /� macrophages showed
increased mitochondrial ROS generation after ATP stimulation
compared with SHPþ /þ macrophages (Fig. 6b). These data
partly correlate with our previous report that SHP deficiency
results in increased mitochondrial ROS generation after LPS
stimulation6. Furthermore, fenofibrate significantly attenuated
the production of mitochondrial ROS induced by inflammasome
stimulation in SHPþ /þ macrophages, but did not affect
mitochondrial ROS production in SHP� /� macrophages
(Fig. 6c). The release of mitochondrial DNA (mtDNA) into the
cytosol is dependent on mitochondrial ROS generation, and
contributes to IL-1b and IL-18 secretion22. We therefore
examined the LPS/ATP-dependent cytosolic accumulation of
mtDNA in SHPþ /þ and SHP� /� macrophages. As shown in
Fig. 6d, the mtDNA copy number was significantly increased in
the cytosolic fraction of SHP� /� macrophages, compared with
SHPþ /þ macrophages, after LPS and ATP stimulation.
Moreover, the treatment of macrophages with fenofibrate
markedly inhibited the accumulation of cytosolic mtDNA in
SHPþ /þ macrophages, but not in SHP� /� macrophages, after
NLRP3 inflammasome stimulation (Fig. 6e). These data indicate
that SHP deficiency leads to accumulation of damaged
mitochondria, impairs mitochondrial homeostasis, increases
mitochondrial ROS generation and heightens cytoplasmic
release of mitochondrial DNA in macrophages.
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The NLRP3–ASC complex localizes to ER in SHP� /� cells.
Unexpectedly, we found that mitochondrial translocation of the
NLRP3–ASC complex was diminished in SHP-deficient macro-
phages (see Fig. 5a). To investigate this phenomenon further, we
analysed the binding partners and localization of the NLRP3–ASC
complex in SHPþ /þ and SHP� /� macrophages. Subcellular
fractionation and co-IP analysis showed that NLRP3 was able to
associate with SHP, ASC, MAVS and TXNIP in the mitochondrial
fraction after NLRP3 inflammasome activation in WT macro-
phages (Fig. 7a). However, in SHP� /� macrophages, a persistent
and increased association of NLRP3 with ASC and TXNIP was
observed in the cytoplasmic fractions (Fig. 7a), especially in the ER
(Fig. 7b). Three-dimensional confocal microscopic analysis showed
that NLRP3 was abundant in ER from SHP� /� macrophages
(Fig. 7c). These data suggest that SHP is required for controlled
activation of the NLRP3 inflammasome complex through trans-
location of an SHP–NLRP3–ASC complex into mitochondria and
regulation of mitochondrial homeostasis.

Discussion
Here, we provide evidence of a novel and critical role for SHP in
regulating NLRP3 inflammasome activation through physical and
functional interaction with NLRP3. Several molecules, such as

interferon (IFN)-g, nitric oxide, type I IFNs and A20, have been
shown to inhibit NLRP3 inflammasome activation at the transcrip-
tional and post-translational levels1,23,24. We have shown here that
the orphan nuclear receptor SHP inhibits assembly of the NLRP3
inflammasome and maturation of NLRP3-dependent IL-1b in the
context of a variety of inflammasome-activating stimuli. In addition
to its established role in regulating Signal 1 in inflammasome
activation5, the present study provides new evidence that SHP is
also involved in controlling Signal 2, triggered by NLRP3 agonists.
SHP played a critical role in the inhibition of IL-1b and IL-18
production in response to various NLRP3 inflammasome-activating
stimuli. Importantly, using unprimed, NLRP3-overexpressing cells,
we demonstrated that SHP is critical for suppression of IL-1b and
IL-18 maturation. These results implicate SHP as a key regulator of
the second signalling pathway of inflammasome assembly, adding to
previously discovered roles related to TLR signal regulation5.
Around half of all mammalian NRs are able to interact with SHP.
By interacting with multiple binding partners in different cells and
tissues, SHP is involved in controlling a variety of biological
responses, especially in metabolic and proliferative pathways25. Our
study suggests that SHP acts as an important adaptor in innate
immune activation by interacting with numerous signalling partners
to efficiently block exacerbated inflammatory responses during
infection or inflammation.
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Furthermore, SHP is required for protection against inflam-
matory signal-induced pathology in several mouse models,
including MSU-mediated peritonitis and acute tubular injury of
the kidney. Activation of the NLRP3 inflammasome and
hypersecretion of IL-1b are known to be involved in a variety
of acute and chronic disorders including diabetes, atherosclerosis,
gout, chronic kidney disease and Alzheimer’s disease26. Despite
treatment advances, including several IL-1 inhibitors (rilonacept
(IL-1 Trap)), canakinumab (a monoclonal anti-IL-1b antibody)
and anakinra, there is an urgent need to develop novel
therapeutics for the management of inflammatory diseases. We
have shown that treatment with fenofibrate or MSP ameliorates
the pathological changes and inflammatory cytokine production
that occur in models of peritonitis (MSU-induced) and acute
kidney injury by an SHP-dependent mechanism. Our data
provide valuable insights for the SHP-based development of
new and effective therapies targeted to pathogenic mechanisms
that are mediated by NLRP3 inflammasome activation.

We have also elucidated the mechanism by which SHP fine
tunes NLRP3 inflammasome responses through regulation of
mitochondrial homeostasis after translocation into mitochondria
as an SHP–NLRP3 complex. Mitochondrial ROS generation is an
important regulatory mechanism that potentiates NLRP3 inflam-
masome activation in response to various stimuli19,27,28.
Dysregulated mitochondrial activity and accumulation of ROS
generating damaged mitochondria result in NLRP3
inflammasome activation19. Release of mtDNA into the
cytoplasm and opening of the mitochondrial permeability
transition pore are proposed to promote IL-1b secretion in
macrophages22. In addition, NLRP3 Signal 2 activators can
trigger the release of oxidized mtDNA into the cytosol, where it
binds to the NLRP3 inflammasome to induce IL-1b
production28,29. More recent studies using drugs that target
mitochondria showed that NLRP3 inflammasome activation and
IL-1b secretion are not only dependent on mitochondrial ROS

generation but also sensitive to overall mitochondrial functional
disturbance30. Moreover, we previously showed that the SHP-
inducing, anti-lipidemic drug fenofibrate inhibits systemic
inflammation through the induction of mitochondrial
uncoupling protein 2 and suppression of mitochondrial ROS
generation in macrophages6. Together, our data strongly suggest
that SHP plays an important role in the fine control of
mitochondrial health to prevent excessive mitochondrial
damage during NLRP3 inflammasome activation.

Our data clearly show that the NLRP3 inflammasome complex
localizes to the ER when damaged mitochondria accumulate in
SHP-deficient macrophages. Numerous findings suggest that ER
dynamics play a pivotal role in the regulation of NLRP3
inflammasome activation31–33. Indeed, NLRP3 inflammasome
activation occurs at the mitochondria-associated membrane
(MAM) structure19,20, the interface between the ER and the
mitochondrion, where ER protein synthesis is coupled to
mitochondrial metabolism34. In SHP-deficient cells, the distinct
spatial and functional relationship between the two organelles
appears to be defective, presumably owing to excessive
mitochondrial damage and impaired mitochondrial
homeostasis. These data indicate that SHP is critically involved
in the spatial and functional coordination of NLRP3
inflammasome activation.

In conclusion, our data clearly indicate that SHP acts as a novel
negative regulator of NLRP3 inflammasome activation through
direct interaction with NLRP3 and fine tuning of mitochondrial
quality control (see Supplementary Fig 9 for a proposed model).
Our data also suggest that SHP-targeting agents ameliorate
excessive NLRP3 activation, making them promising candidates
for the treatment of human inflammatory diseases.

Methods
Mice and cell culture. Mice used in individual experiments were age- and
sex-matched (6–8 weeks of age). Wild-type C57BL/6 mice were purchased from
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Samtako Bio Korea (Gyeonggi-do, Korea), and SHP� /� mice with a C57BL/6
genetic background35 were kindly provided by Dr D. D. Moore (Baylor College of
Medicine). The genotyping of animals was confirmed by PCR analysis. Briefly,
primers used to detect the KO allele were sense, Gal-PCR 5 (50-CTAGCTAGAG
GATCCCCGGGTACC-30) and antisense, Gal-PCR 3 (50-AATTCGCGTCTG
GCCTTCCTGTAG-30), located in the b-gal cassette. Primers used to detect the
wild-type allele were sense, Exon-1F (50-CTCTGCAGGTC GTCCGACTATTCT
G-30) and antisense, Exon-1B (50-CCTCGAAGGTCACAGCATCCTG-30), located
in the deleted first exon of the SHP gene coding region35. Mice were maintained
under specific pathogen-free conditions.

Primary BMDMs were isolated and cultured for 5–7 days in differentiation
medium containing macrophage colony-stimulating factor (25 ngml� 1; R&D
Systems 416-ML), as described previously36. The culture medium was Dulbecco’s
modified Eagle’s medium (DMEM; Life Technologies) containing 4mM glutamine
and 10% fetal bovine serum (FBS; Life Technologies). All animal-related
procedures were reviewed and approved by the Institutional Animal Care and Use
Committee, Chungnam National University College of Medicine (Daejeon, Korea).

HEK293T cells (ATCC-11268; American Type Culture Collection) were
maintained in DMEM containing 10% FBS, sodium pyruvate, nonessential amino
acids, penicillin G (100 IUml� 1), and streptomycin (100 mgml� 1). Human
monocytic THP-1 (ATCC TIB-202) cells were grown in RPMI 1640/GlutaMAX
supplemented with 10% FBS, and then treated with 20 nM phorbol myristate

acetate (PMA; Sigma-Aldrich) for 24 h to induce differentiation into macrophage-
like cells, followed by three washes with phosphate-buffered saline (PBS). Transient
transfection was performed using Lipofectamine 2000 (Life Technologies),
according to the manufacturer’s instructions.

Reagents. Monosodium urate (MSU) crystals (tlrl-msu) and ultrapure lipopoly-
saccharide (LPS; tlrl-3pelps) were purchased from InvivoGen. ATP (A5394),
nigericin (N7143), polyinosine–polycytidylic acid (poly I:C, P1530), folic acid
(F7876), fenofibrate (F6020) and phorbol-12-myristate-13-acetate (PMA, P8139)
were purchased from Sigma. Macrophage-stimulating protein (MSP) (352-MS,
6244-MS) was purchased from R&D Systems. Dextran sulfate sodium (DSS) salt
(02160110) was purchased from MP Biomedicals. Dimethyl sulfoxide (DMSO;
Sigma) was added to the cultures at 0.1% (v/v) as a solvent control. MitoSOX and
Alexa Fluor-conjugated secondary antibodies were purchased from Life
Technologies.

Plasmid construction. DNA fragments corresponding to the coding sequences of
the human NLRP3, SHP and ASC genes were amplified by polymerase chain
reaction (PCR). V5-tagged SHP, Flag-tagged NLRP3 and AU1-tagged ASC were
cloned into the XbaI and BamHI sites in pCDH-CMV. Flag-tagged truncated
mutant constructs of NLRP3 or V5-tagged truncated mutant constructs of SHP
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were created by subcloning the PCR products of complementary DNA fragments,
containing each domain of the target genes, into pCDH-CMV. C-terminal HA-
tagged SHP WT and deletion mutants (D2–10, D2–19, D2–28, D2–37 and D2–46)
were cloned into pEGFP-C1. All the constructs were sequenced using an ABI
PRISM 377 automatic DNA sequencer to verify 100% correspondence with the
original sequence.

Construction of the expression plasmid. For the GST pull-down assay, a
bicistronic expression plasmid (pIRES-SHP1-257-PYD3-97-STrEP-Cterm) was
constructed for simultaneous translation of SHP and PYD genes from the same
mRNA transcript. The gene encoding SHP1-257 was amplified by polymerase chain
reaction (PCR) using primers carrying NheI and XhoI restriction enzyme sites at
their 50 and 30 ends, respectively: forward, 50-CATAGCTAGCATGGGCA
GCACCAGCCAAC-30 ; and reverse, 50-CCGCTCGAGTCACCTGA GCAAAA
GCATG-30 . The resulting PCR product was cloned into multiple cloning site A of
the pIRES vector (Clontech Laboratories Inc.). For generation of a C-terminal
Strep-tagged PYD construct, the gene encoding PYD3-97 was intermediately cloned
into the pEXPR-IBA103 vector (IBA) using primers carrying XbaI and XhoI
restriction enzyme sites: forward, 50-GCTCTAGAATGGCAAGCACCCGCTG
C-30 ; and reverse, 50-CCGCTCGAGAT CTGAACCCCACTTC-30 . It was later
sub-cloned into multiple cloning site B of the pIRES vector using the restriction
enzymes XbaI and NotI.

Co-expression and purification of SHP1-257 and PYD3-97. Sixty plates (1� 107

cells per plate) were grown at 37 �C in 5% CO2 in a humidified incubator in
Dulbecco’s modified Eagle’s medium (HyClone) supplemented with 10% fetal
bovine serum, 2mM L-glutamine, 100Uml� 1 penicillin and 100mgml� 1

streptomycin. At 70% confluence, transient transfection was carried out with
X-tremeGENE HP DNA Transfection Reagent (Roche) according to the manu-
facturer’s instructions. For overexpression of SHP1-257 and PYD3-97 in the
HEK293T cells, cells were transfected with 15 mg of pIRES-SHP1-257-PYD3-97-
STrEP-Cterm per plate. The cells were then collected at 30 h post transfection and
lysed at 4 �C in a buffer containing 50mM Tris-HCl (pH 7.4), 7.5% glycerol,
150mM NaCl, 1mM EDTA, 0.1% NP-40, 1.0% sodium deoxycholate, 0.25mM
sodium pyrophosphate, 2.0mM sodium vanadate, 2.0mM sodium fluoride,
10mgml� 1 aprotinin, 1.0 mgml� 1 leupeptin, 1.0 mgml� 1 pepstatin and 200mM
phenylmethylsulfonyl fluoride. Extracts were further incubated with avidin to mask
intracellular biotin, and were then collected and cleared by centrifugation at
18,000 g. Before purification, co-expression of SHP and C-terminal Strep-tagged
PYD was confirmed by western blotting using a rabbit polyclonal antibody against
SHP (Santa Cruz Biotechnology, Inc.) or a mouse monoclonal antibody against

Strep-tag (StrepMAB-Classic) (IBA). Recombinant Strep-tagged proteins were
purified by affinity chromatography on a matrix carrying engineered streptavidin
(Strep-Tactin) (IBA). The proteins were eluted in a buffer containing 100mM
Tris-HCl (pH 8.0), 150mM NaCl, 1mM EDTA and 2mM Biotin. The eluted
proteins were assessed by sodium dodecyl sulfate–polyacrylamide gel electro-
phoresis (SDS–PAGE).

Adenovirus construction. Both an adenovirus encoding full-length human SHP
and an SHP-specific siRNA adenovirus were constructed, as described previously37.
Briefly, the complementary DNA sequence of full-length human SHP or an siRNA
sequence specific for mouse SHP (239GACAGTAGCCTTCCTCAGGAA250) was
incorporated into the pAdTrack-CMV shuttle vector, and a recombinant vector
was generated using the AdEasy adenoviral vector system. The recombinant viruses
were amplified in HEK293 cells and isolated by caesium chloride density
centrifugation (Sigma).

Analysis of inflammasome activation. Human THP-1 cells and BMDMs were
primed with 100 ngml� 1 ultrapure LPS for 4 h in serum-free medium. Stimula-
tions with inflammasome-activating stimuli were performed in serum-free medium
(Life Technologies). Cells were treated with ATP (5mM), nigericin (15mM), MSU
crystals (200 mgml� 1), poly I:C (5 mg per 106 cells as indicated) for the indicated
times. Poly I:C was transfected into cells using Lipofectamine 2000 (Life Tech-
nologies). At the end of the stimulation, supernatants and cell lysates were collected
and stored at � 20 �C. For the analysis of supernatants by immunoblotting, triplet
samples were pooled and analysed with standard techniques38,39.

Immunoblotting. Immunoblotting was performed as described previously36. For
immunoblotting, cells were lysed in RIPA buffer containing 10mM Tris-HCl at pH
8.0, 1mM EDTA, 140mM NaCl, 0.1% SDS, 0.1% sodium deoxycholate, 1% Triton
X-100 and a protease inhibitor cocktail (Roche). The cell suspension was incubated
at 4 �C for 15min and then centrifuged at 14,000g for 15min at 4 �C. The
supernatant was collected and the protein concentration was measured by BCA
assay (Pierce). The polypeptides were resolved by SDS–PAGE and transferred to a
polyvinylidene difluoride (PVDF) membrane (Bio-Rad). Specific antibodies to SHP
(SC-15283, dilution 1:1,000), ASC (SC-22514-R, dilution 1:1,000), NLRP3 (SC-
66846, 34411, dilution 1:1,000), caspase-1 p10 (SC-514, dilution 1:1,000), MAVS
(SC-166583, dilution 1:2,000), TXNIP (SC-271237, dilution 1:2,000), tubulin (SC-
23948, dilution 1:5,000), VDAC (SC-271237, , dilution 1:5,000), FACL4 (SC-47997,
dilution 1:1,000), FLAG (SC-807, dilution 1:1,000), V5 (SC-83849, dilution
1:1,000), GFP (SC-9996, dilution 1:1,000), LAMP1 (SC-17768, dilution 1:2,000)
and actin (SC-1616, dilution 1:8,000) were purchased from Santa Cruz
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Biotechnology. The antibody to calreticulin (D3E6, 12238) was from Cell Signaling,
IL-1b (AF-401-NA, , dilution 1:2,000) was from R&D Systems and NLRP3 (AG-
20B-0014, dilution 1:1,000) was from Adipogen. The antibodies to COX IV
(ab16056, dilution 1:5,000) and AU1 (ab3401, dilution 1:5,000) were purchased
from Abcam. Antibody binding was visualized by chemiluminescence (ECL;
Millipore) and detected by a Vilber chemiluminescence analyzer (Fusion SL 4;
Vilber Lourmat). Images have been cropped for presentation. Full size images of
the immunoblots are provided in Supplementary Fig. 10.

Immunoprecipitation. Cells were collected and then lysed in RIPA buffer sup-
plemented with a complete protease inhibitor cocktail (Roche). After pre-clearing
with protein A/G agarose beads for 2 h at 4 �C, whole-cell lysates were used for
immunoprecipitation with the indicated antibodies. Generally, 1–2mg of com-
mercial antibody was added to 1ml of cell lysate and incubated at 4 �C for 18 h.
After incubation with protein A/G agarose beads for 6 h, immunoprecipitates were
extensively washed with lysis buffer and eluted with SDS loading buffer by boiling
for 5min.

Protein purification and mass spectrometry. To identify SHP-binding proteins,
LPS-primed BMDMs and THP-1 cells were stimulated with ATP for 30min,
collected and lysed with NP-40 buffer (50mM HEPES, pH 7.4, 150mM NaCl,
1mM EDTA, 1% (v/v) NP-40) supplemented with a complete protease inhibitor
cocktail (Roche). Post-centrifuge supernatants were pre-cleared with protein A/G
beads at 4 �C for 2 h. Pre-cleared lysates were subjected to immunoprecipitation
with aSHP for 18 h at 4 �C. Precipitates were washed extensively with lysis buffer.
Proteins bound to beads were eluted and separated on a NuPAGE 4–12% Bis-Tris
gradient gel (Life Technologies). After silver staining (Life Technologies), specific
protein bands were excised and analysed by ion-trap mass spectrometry at the
Korea Research Institute of Bioscience and Biotechnology Mass Spectrometry
facility, and amino acid sequences were determined by tandem mass spectrometry
and database searches.

Cellular fractionation. Cytosol and mitochondria were isolated from cells using a
Mitochondria Fractionation Kit (Active Motif, 40015) or as described previously6.
Cytosol, microsomes (endoplasmic reticulum, ER), mitochondria-associated
membrane (MAM) fraction and pure mitochondria were isolated from cells using
an Endoplasmic Reticulum Isolation Kit (Sigma, ER0100) or as described
previously40,41. Subcellular fractionated proteins were lysed in buffer containing 2%
SDS and boiled with 2� reducing sample buffer for SDS–PAGE.

Enzyme-linked immunosorbent assay. Mouse BMDMs and human THP-1 cells
were treated as indicated and processed for analysis by sandwich enzyme-linked
immunosorbent assay (ELISA). Cell culture supernatants and peritoneal cavity or
organ homogenates were analysed for human and mouse TNF-a, human and
mouse IL-1b, human IL-8 using a BD OptEIA ELISA set (BD Pharmingen) or
human (KHC0181) and mouse (KMC0181) IL-18 using an ELISA kit from Life
Technologies or mouse IL-8 using an ELISA kit from Mybiosource (MBS728148).
All the assays were performed as recommended by the manufacturers.

Mitochondrial DNA quantification. To enumerate mtDNA copies in cytosol, we
measured the mitochondrial (mt) to nuclear (n) DNA ratio. Mitochondrial DNA
was purified using by QIAamp DNA mini kit (Qiagen) or as described pre-
viously22. 18S ribosomal RNA was used as a marker for nDNA and cytochrome
c oxidase I for mtDNA. Real-time PCR reactions were performed according to
the manufacturer’’s instructions (SYBR green PCR master mix, Qiagen), and
thermal cycling was performed in a Rotor Gene 6000 instrument (Qiagen). The
mtDNA content was normalized to the nucleic DNA content. The following
primers were used: 18S forward, 50-TAGAGGGACAAGTGGCGTTC-30 , and
reverse, 50-CGCTGAGCCAGTCAGTGT-30 ; and mouse cytochrome c oxidase I
forward, 50-GCCCCAGATATAGCATTCCC-30, and reverse, 50-GTTCATC
CTGTTCCTGCTCC-30.

Immunofluorescence and confocal microscopy. Immunofluorescence analysis
was performed as described previously36. After the appropriate treatment, cells
were washed twice with PBS, fixed with 4% paraformaldehyde in PBS for 10min,
permeabilized with 0.25% Triton X-100 in PBS for 10min and incubated with
primary antibody for 18 h at 4 �C. Cells were washed to remove excess primary
antibody and incubated with the appropriate fluorescently labelled secondary
antibodies for 30min at room temperature. Nuclei were stained by incubation with
DAPI for 5min. After mounting, fluorescence images were acquired using a
confocal laser-scanning microscope (LSM 710; Zeiss).

Mitochondrial ROS levels were measured in cells using MitoSOX (Life
Technologies) staining (5 mM for 15min at 37 �C). Fluorescence intensity was
measured using the ImageJ or Adobe Photoshop CS4 software. For co-localization
analysis, images of dynamic cell interactions were recorded as vertical z-stacks and
processed using the Imaris 7.1.1 (Bitplane), Ultraview 5.5 (PerkinElmer) and

Adobe Photoshop 7 (Adobe Systems) software to generate a three-dimensional
image of the cells.

Immunohistostaining. For immunohistostaining of tissue sections, kidneys were
fixed in 10% formalin and sectioned in paraffin, as previously described6. To
examine neutrophil infiltration or IL-1b expression, 3-mm paraffin sections were
deparaffinized and hydrated by serially dipping into 100–70% ethanol, distilled water
and PBS. The slides were antigen retrieved in sodium citrate buffer, blocked for
20min in 1.5% normal rabbit serum in PBS and immunostained with antibodies
specific for neutrophils (NIMP-R14, ab2557) or IL-1b (H-153, SC-7884).

Transmission electron microscopy. For transmission electron microscopy ana-
lysis, BMDMs were washed with PBS, fixed with 4% paraformaldehyde and 2%
glutaraldehyde in 0.1M sodium cacodylate buffer (pH 7.4) for 1 h, post-fixed in 1%
osmium tetroxide and 0.5% potassium ferricyanide in cacodylate buffer for 1 h,
embedded in resin and cured at 80 �C for 24 h. Ultrathin sections (70–80 nm) were
cut using an ultramicrotome (RMC MT6000-XL), stained with uranyl acetate and
lead citrate, and examined using a Tecnai G2 Spirit Twin transmission electron
microscope (FEI Co.) and a JEM ARM 1300S high-voltage electron microscope
(JEOL, Tokyo, Japan).

Folic acid-induced ATN. Folic acid (250mgkg� 1, Sigma) or vehicle (150mM
sodium bicarbonate) was administered intraperitoneally. Animals were weighed at
time 0 and at 12, 24 and 36h after administration of folic acid. At 36 h, mice were
euthanized by CO2 asphyxiation. One kidney was formalin fixed and processed for
H&E staining, while the other was fixed in 1% paraformaldehyde and subjected to
immunofluorescence staining, as described previously15,42. Interstitial neutrophil
infiltration and IL-1b-positive cells were quantified in 3-mm kidney sections stained
with antibodies specific for neutrophils and IL-1b. The number of interstitial cells in
the corticomedullary junction was counted in a randomly selected high-power field
(� 400), and at least five fields were counted per kidney. For H&E staining, formalin
fixed kidneys were paraffin-embedded, processed and sectioned at 7mm by Histoserv
Inc. Tubulointerstitial damage was assessed by scoring the following standard
parameters: tubular necrosis, tubular dilatation and cast formation. Scoring was as
follows; involvement of 0–25% of tubules within each corticomedullary high-
powered field¼ 1; 25–50%¼ 2; 50–75%¼ 3; 75–100%¼ 4. At least 10 randomly
chosen, non-overlapping fields were scored in each kidney section and all the
histological examinations were performed by a nephrologist in a masked manner.

MSU-induced peritonitis. Peritonitis was induced in 6- to 10-week-old age- and
sex-matched mice by intraperitoneal injection of 1mg kg� 1 MSU20,43. After 6 h,
the peritoneal cavity was flushed with sterile PBS. The lavage fluid was centrifuged
and the supernatant was concentrated using Amicon Ultra Centrifugal Filters
(Millipore) and subjected to ELISA for the indicated cytokines.

Statistical analyses. For statistical analysis, data obtained from independent
experiments (means±s.d.) were analysed using a two-tailed Student’s t-test. Dif-
ferences were deemed to be significant at a P value o0.05. For survival, data were
graphed and analysed using the GraphPad Prism software (GraphPad Software,
Inc.). Statistical significance was evaluated using a log-rank (Mantel–Cox) test.
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