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Mammalian cortex features a vast diversity of neuronal cell types, each with
characteristic anatomical, molecular and functional properties’. Synaptic
connectivity shapes how each cell type participates in the cortical circuit, but
mapping connectivity rules at the resolution of distinct cell types remains difficult.
Here we used millimetre-scale volumetric electron microscopy?to investigate the
connectivity of all inhibitory neurons across a densely segmented neuronal
population of 1,352 cells spanning all layers of mouse visual cortex, producinga
wiring diagram of inhibition with more than 70,000 synapses. Inspired by classical
neuroanatomy, we classified inhibitory neurons based on targeting of dendritic
compartments and developed an excitatory neuron classification based on dendritic
reconstructions with whole-cell maps of synaptic input. Single-cell connectivity
showed a class of disinhibitory specialist that targets basket cells. Analysis of
inhibitory connectivity onto excitatory neurons found widespread specificity,

with many interneurons exhibiting differential targeting of spatially intermingled
subpopulations. Inhibitory targeting was organized into ‘motif groups’, diverse sets
of cells that collectively target both perisomatic and dendritic compartments of
the same excitatory targets. Collectively, our analysis identified new organizing
principles for cortical inhibition and will serve as afoundation for linking
contemporary multimodal neuronal atlases with the cortical wiring diagram.

In mammalian cortex, information processing involves a diverse
population of neurons distributed across six layersin an arrangement
described as a cortical column?®. Cell types are a central concept for
understanding how the columnar network is organized". Originally
classified on the basis of morphology*, cortical cell types have been
increasingly characterized by transcriptomic, molecular, electrophysi-
ological and functional properties as well>°. Excitatory neurons make
up almost 90% of neocortical neurons' and vary not only across cortical
layers but also by long-range projection targets™. Inhibitory neurons,
although much fewer in total number, have at least as much diversity
as excitatory neurons in a single region®3, offering the potential for
highly selective control of cortical activity.

Determining how fine-scale cell type definitions are reflected in
synaptic connectivity remains difficult. Most of our understanding
of inhibitory connectivity is based not on individual cell types but
on cardinal subclasses based on marker genes parvalbumin (PV),

somatostatin (SST), vasoactive intestinal polypeptide (VIP) and /a2,
each with shared developmental, functional and synaptic proper-
ties”? ™, Within these cardinal subclasses, individual cell types can be
highly diverse®”* and functionally distinct", but little is known about
connectivity for most cell types. Although some studies have observed
largely unspecific connectivity onto nearby cells'®, others have found
examples of selective targeting of subpopulations of excitatory cells
based on thelayer” or long-range axonal projection of target cells?Z.
It is not known whether such selectivity is common or rare relative to
unspecific connectivity. Likewise, basic organizational properties
remainunclear: for example, which excitatory neurons receive inhibi-
tion from the same interneurons.

To date, physiological®** or viral** approaches to measuring con-
nectivity are still challenging to scale to the full diversity of potential
cell type interactions. In smaller model organisms like Caenorhabdi-
tis elegans® and Drosophila melanogaster’®”, dense reconstruction
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Fig.1| A columnar reconstruction of mouse visual cortex. a, The millimetre-
scale EM volumeis large enough to capture complete dendrites of cells across
alllayers. Neurons shown are arandom subset of the volume, with asingle
exampleatright for clarity. b, The autosegmented EM data show ultrastructural
features such asmembranes, synapses and mitochondria. Scale bar, 500 nm.

¢, Top view of EM data with approximate regional boundaries indicated. The
yellow box indicates the100 pm x 100 pm column of interest. Scale bar,200 pum.
d, Allsomalocationsinthe column coloured by cell class. Scale bar,100 pm.

e, Example neurons from along the column. Note that anatomical continuity
requiredadding abendindeeperlayers.f, Proofreading workflow by cell

class. g, Cell density for column cells along cortical depth by cell class.

using large-scale electron microscopy (EM) has been instrumental
for discovering cell types and their connectivity. In mammalian cor-
tex, technical limitations on EM volume sizes have meant that similar
studies could not examine complete neuronal arbours, making the link
between cellular morphology and connectivity difficult to address?°.
However, recent advances in data generation and machine learning
have helped to produce EM datasets at the scale of a cubic millimetre,
making circuit-scale cortical EM volumes now possible?.

Inthis study, we used amillimetre-scale EM volume of mouse primary
visual cortex (VISp)?to reconstruct the anatomy and synaptic connec-
tivity foracontinuous population of1,352 neuronsinacolumnspanning
from layer 1to white matter. The scale of this data, combined with the
resolution provided by EM, led us to ask how morphological cell types
relate to the synaptic connectivity of inhibitory neurons. Inspired by
classical neuroanatomical methods, we classified inhibitory neurons
into connectivity-based subclasses largely aligned with molecular sub-
classes and developed anew classification of excitatory neurons using
morphological and synaptic properties, capturing features that were
not clear from morphology alone. By analysing the synaptic output
of inhibitory neurons at both the single-cell and subclass levels, we
found thatinhibitory neurons exhibited widespread target specificity
and identified groups of interneurons with similar subclass-specific
targeting but with different compartmental targeting. Our data not
onlyidentified anew class of disinhibitory specialist but also indicate an

0 05 1.0 15

Anterior

Lateral =

1 Excitatory dendrites k Inhibitory dendrites m Inhibitory axons

j | n

L1 L1 - L1 ooees
L2/3 12/34 s L2/3

L4 4 L4+ L4

L5 154 L5

L6 P o L6
wmd WM WM

10° 10t
Output synapses

10° 10¢ 102

Input synapses

10° 10t

Input synapses
Scale bar,200 pm. h, Input synapse count per micrometre of depth acrossall
excitatory (purple) and inhibitory (green) column cells along cortical depth by
target neuronal cell class. Scale bar, 200 pm. i, All excitatory dendrites, with
arbours of cellswith deeper somata coloured darker. Same orientationasind.
Scalebar,200 pm. j, Number of input synapses for each excitatory neuronasa
function of somadepth.k, Allinhibitory dendrites, asinj.1, Number of input
synapses forinhibitory neurons, asin k. m, Axons of inhibitory neurons, asinj.
n, Number of output synapses for inhibitory neurons, asink. VISrl, rostrolateral
visual area; VISal, anterolateral visual area; Exc, excitatory; inh, inhibitory; non,
non-neuronal; syn, synapses; WM, white matter.

organizing principle forinhibitory connectivity thatis complementary
to, but distinct from, cell types: diverse groups of inhibitory neurons
that are positioned to collectively control activity of the same target
populations with remarkable precision.

A millimetre-scale cortical EM reconstruction

To measure synaptic connectivity and neuronal anatomy for alarge neu-
ronal population, we used a serial section transmission EM volume of
mouse visual cortex acquired as part of the broader MICrONS project?.
Specifically, we analysed a volume of mouse visual cortex spanning
523 x1,100 x 820 um (anteroposterior x mediolateral x depth), cover-
ing pia to white matter and including parts of VISp and higher-order
visualareas (Fig.1a-c).Importantly, these dimensions were sufficient to
capture the entire dendritic arbour of typical cortical neurons (Fig. 1a)
at aresolution capable of resolving ultrastructural features such as
synaptic vesicles (Fig. 1b). Convolutional networks generated aninitial
autosegmentation of all cells, segmented nuclei, detected synapses
and assigned synaptic partners®. Owing to reduced alignment quality
near the edge of tissue, segmentationbegan about 10 pm from the pial
surface and continued into white matter.

Togenerate anunbiased sample of cells across all layers, we selected
all cells whose soma fell within a100 x 100-pm-wide column from piato
white matter and centred onthe VISp portion of the volume (Fig. 1c-e).
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This location was chosen to be far from dataset edges to avoid trun-
catedarbours as much as possible. To follow a continuous population
of neurons, the column bends in lower layer 5, defined such that the
apical dendrites of deep layer cells would be intermingled with the cell
bodies of superficial cells (Fig.1d,e and Methods). This trajectory was
also followed by primary axons of superficial cells and the translaminar
axons ofinhibitory neurons, indicating that thisbend is shared across
celltypes.

Dense neuron population across all layers

We classified all 1,886 cells in the column as excitatory neurons, inhibi-
tory neurons or non-neuronal cells on the basis of morphology (Fig.1d).
For neurons, we performed extensive manual proofreading—more than
46,000 edits in all (Fig. 1f), guided by computational tools to focus
attention on potential error locations (Methods). We selected a proof-
reading strategy to efficiently measure the connectivity of inhibitory
neuronsacross all possible target cell types. Proofreading of excitatory
neurons aimed to reconstruct complete dendritic arbours, combining
both manual edits and computational filtering of false axonal merges
onto dendrites (Methods), and for inhibitory neurons we reconstructed
both complete dendritic arbours and extensive (butincomplete) axonal
arbours.

Consistent with previous reports', excitatory cell densities varied
between layers, whileinhibitory neurons and non-neuronal cells were
more uniform (Fig. 1g). Dendritic reconstructions included the loca-
tions of a total of 4,490,649 synaptic inputs across all cells. Synaptic
inputs onto excitatory cell dendrites were more numerousinlayers1-4
compared to layers 5-6 (Spearman correlation of synapse count with
depth: r=-0.92, P=1.3 x10™), whereas inputs onto inhibitory cells
were relatively uniform across depths (Fig. 1h; Spearman correlation
of synapse count with depth: r=-0.06, P=0.76).

Reconstructions captured rich anatomical information for individual
cells across all layers. Excitatory cell dendrites (Fig. 1i) typically had
thousands of synapticinputs, with laminar differences in total synaptic
input per cell (analysis of variance for layer effect: F=82.9,P=1.6 x 107,
Fig.1j). Typicalinhibitory neurons had 10>-10* synaptic inputs (Fig. 1k,I)
and 10*-10* outputs (Fig. 1m,n) but did not show strong laminar pat-
terns (analysis of variance for layer effect: F= 0.72, P=0.53). Collec-
tively, inhibitory axon reconstructions had 427,294 synaptic outputs.
Attempts were made to follow every maininhibitory axon branch, but
forlarge inhibitory arbours not every tip was reconstructed to comple-
tion; axonal properties should be treated as alower bound. Comparing
to asubset of neurons where reconstruction aimed for completeness®,
we estimate that typical axonal reconstructions captured 50-75% of
their total synaptic output compared to exhaustive proofreading.

Connectivity-based inhibitory subclasses
Molecular expression is a powerful organizing principle for inhibitory
neurons, with four cardinal subclasses having distinct connectivity
rules, synaptic dynamics and developmental origins'*. However, EM
data have no direct molecular information, nor do simple rules map
morphology to molecularidentity. Classical neuroanatomical studies
often used the postsynaptic compartments targeted by an inhibitory
neuron as a key feature of its subclass'>*% for example, distinguishing
soma-targeting basket cells from dendrite-targeting Martinotti cells.
Inspired by thisapproach, we used the targeting properties of inhibi-
tory neurons to assign cells to anatomical subclasses (Fig. 2a). For all
excitatory neurons, we divided the dendritic arbour into four compart-
ments: soma, proximal dendrite (less than 50 um from the soma), apical
dendrite and distal basal dendrite (Fig. 2b; see Extended Data Fig. 1
and Methods for apical classification). Inhibitory cells were treated as
afifth target compartment. For each inhibitory neuron, we measured
the distribution of synaptic outputs across compartments (Fig.2c). We
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alsoincluded two measures of how a cell distributes its synapses onto
individual targets: (1) the fraction of all synapses that were part of a
multisynaptic connectionand (2) the fraction of synapses in amultisyn-
aptic connection that were close together along the axon (‘clumped’;
Fig.2d). We used a distance threshold of 15 um, about a quarter of the
circumference of atypical cellbody, and measurements were robust to
the exact value (Extended Data Fig.2). We use the term ‘connection’ to
indicate a pre- and postsynaptic pair of cells connected by one or more
distinct synapses and ‘multisynaptic connection’ for aconnection with
atleasttwosynapses. We trained alinear classifier on the basis of expert
annotations of the four cardinal subclasses for a subset of inhibitory
neurons and applied it to all cells (Fig. 2d and Extended Data Fig. 3).

We named each subclass on the basis of its dominant anatomical
property: perisomatic targeting cells (PeriTC) that primarily target
soma or proximal dendrites, distal dendrite targeting cells (DistTC)
that primarily target distal basal or apical dendrites, sparsely targeting
cells (SparTC) that make few multisynaptic connections and inhibitory
targeting cells (InhTC) that primarily target other inhibitory neurons
(Fig. 2e). Typical examples of each subclass correspond roughly to
classical or molecular subclasses (Fig. 2e), but thereis not aone-to-one
match'?", PeriTCs would include soma-targeting cells from multiple
molecular subclasses (for example, both PV and CCK* basket cells)®.
DistTCs would include SST* Martinotti and non-Martinotti cells but
also any neuron that strongly targets apical dendrites. InhTCs align well
with disinhibitory specialist VIP neurons. The SparTC subclassincluded
both neurogliaform cellsand all layer 1interneurons, indicating that it
largely contained cells from the /d2 class®. Note that some cell types,
such as chandelier cells, had no examples in the column, and some
column cells did not fall into clear classical categories.

Inhibition of inhibitory neurons

Numerous studies have identified astandard architecture for the inhi-
bition of inhibition at the subclass level**: PV neurons inhibit other
PV neurons, SST neurons inhibit all other subclasses (but not them-
selves), and VIP neurons inhibit SST neurons (Fig. 2h). Variations on
this broad pattern have been found; for example, VIP* neurons have
been shown to target both SST and PV cells®, but little is known about
the relationship between these connections and individual cells. The
EM data contained 9,235 synapses between pairs of inhibitory neurons
across 3,569 distinct connections (Fig. 2g and Extended Data Fig. 4),
allowing us to examine whether single-cell resolution offered new
insights into circuit organization.

Tovalidatereconstructions and labels, we first measured inhibitory
connectivity at the level of cardinal subclasses. As a proxy for presyn-
aptic influence of a subclass, we computed the average number of
synapses between all neurons from each presynaptic subclass onto
eachinhibitory neuron and averaged them within postsynaptic sub-
class. The five expected subclass-level connections aligned with the
five strongest connections measured from EM (Fig. 2i), on the basis
of the approximate correspondence (Fig. 2e). Both cardinal subclass
identification and neuronal reconstructions were thus consistent with
established connectivity.

At the level of individual cells, however, the data showed new con-
nectivity patterns. We focused on InhTCs, ‘disinhibitory specialists’
that almost exclusively target other inhibitory neurons rather than
excitatory cells (mean: 82% of synaptic outputs). For each InhTC, we
computed its distribution of synaptic outputs across inhibitory sub-
classes (Fig. 2j,k). VIP-positive disinhibitory specialists in visual cortex
have been shown to preferentially target SST cells***, and thus we
expected InhTCs would largely target DistTCs.

Asexpected, synaptic output was principally onto DistTCs for 21 of
29 InhTCs (mean of 74% of those synapses onto inhibitory neurons),
a group we denoted InhTCP** (Fig. 2k). Single-neuron consideration
of InhTCP* connectivity showed striking laminar organization, with
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Fig.2|Inhibitory subclasses and the inhibition of inhibition. a, Example of
aninhibitory axon making synaptic outputs (green dots) onto specific locations
onatarget pyramidal cell (purple). b, Dendritic compartment definitions for
excitatory neurons.c, Cartoon definition for amultisynaptic connection (left)
and the synapsesin the multisynaptic connection considered ‘clumped’ along
the presynaptic axon (right). d, Targeting features for all inhibitory neurons,
measured as fraction of synapses onto column cells (for fraction clumped only:
synapsesin multisynaptic connections). e, Relationship between anatomical
connectivity categories (top), typical associated classical cell categories
(middle) and anatomical examples (bottom) of the inhibitory subclasses.
Dendriteis darker, axon lighter. f, Adjacency matrix for inhibitory neurons.
Each dotrepresentsaconnectionfromapresynaptictoapostsynapticcell,
with dot size proportional to synapse count. Dots are coloured by presynaptic
subclass and ordered by subclass, connectivity group (Fig. 5) and somadepth.

InhTC ' in layers 2-4 targeting those DistTCs in layers 4 and 5but not
thoseinlayer2/3 (Extended DataFig.5). Those DistTCsinlayer2/3made
few synapses onto InhTC"' in return. Interestingly, layer 2/3 DistTCs
typically targeted excitatory neuronsin upper (‘layer 2’) but not lower
(‘layer 3') layer 2/3, indicating that InhTC-mediated disinhibition differs
across layer 2/3 pyramidal cells.

Unexpectedly, we also found a second population of disinhibitory
specialists. This smaller group of InhTCs (8 0f 29) specifically targeted
PeriTCs (mean of 82% of those synapses onto inhibitory neurons),

Target subclass Synapses per connection

g, Standard model of inhibition of inhibition between molecular subclasses.
h, Mean number of synaptic inputs a postsynaptic cell received fromall cells
ofagiven presynapticsubclass. i, Potential InhTC targets.j, Synaptic output
fraction each InhTC (columns) places onto target subclasses (rows). InhTCs are
clustered into two subtypes: one targeting DistTCs (InhTC®") and another
targeting PeriTCs (InhTCP*"). k, Connectivity diagram for InhTCP*" suggested
by data.l, Morphology of example InhTC%*, m, Morphology of all InhTCPe",

n, Median synapse size (arbitrary units measuring voxels in segmented cleft)
from InhTC¥t (left) and InhTCP*" (right) onto inhibitory subclasses. Error
barsindicate 95% confidence interval. T-test P-values indicated:*, P< 0.05;
*** P<0.005after Holm-Sidak correction. o, Distribution of synapses per
connection for InhTCP*"and InhTC%* onto their preferred and non-preferred
targets. Scale bars, 500 pm. CCK, cholecystokinin; frac, fraction; multisyn,
multisynaptic; no, number of.

and hence we called them InhTC™" (Fig. 2k). Although InhTC"** had
bipolar or multipolar dendrites and were concentrated in layers 2-4
(Extended Data Fig. 5), consistent with typical VIP neurons (Fig. 2m),
InhTCs™" all had multipolar dendrites and were distributed across
layers (Fig. 2n). The eight INhTC™" in the column targeted 56 of 58
PeriTCs with a mean of 10.5 net synapses per target cell, indicating
that this connectivity probably includes basket cells from PV and other
molecular subclasses (Extended Data Fig. 4). We next asked if InhnTCPe"
receivereciprocal inhibition from PeriTCsin analogy to the reciprocal
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Fig.3|Characterization of excitatory neuron M-types. a, Morphology (black)
and synapse (cyan dots) properties were used to extract features for each
excitatory neuron, such asthis layer 2/3 pyramidal cell. b, Heatmap of Z-scored
feature values for all excitatory neurons, ordered by anatomical cluster (Fig. 5)
andsomadepth. Anatomical properties were tip length, tortuosity, dendritic
and somatic synapse counts, total path length, radial extent, median synapse
distance from soma, somatic and dendritic synapse sizes, dynamic range of
synapse size, shallowest and deepest ranges of synapse depth, range of synapse
depths, linear synapse density and dendritic radius. All synapse measures use

inhibition between VIP and SST cells***. However, we found few recipro-
cal synapses from PeriTCs back onto InhTC™"s but numerousinhibitory
inputs from DistTCs (Extended Data Fig. 5), suggesting a new pathway
onthe standard inhibitory diagram (Fig. 2k).

The targeting preference of InhTCs was seen across several aspects
of their connectivity. We first looked at ameasure of synapse size on the
basis of the automatic synapse detection (Methods). InhTCP*t > Dist TC
synapses had amediansize 44% larger thanthose onto otherinhibitory
subclasses (Fig. 20). Similarly, the median InhTC™" > PeriTC synapse
was 69% larger than synapses onto other inhibitory subclasses (Fig. 20).
Inaddition, the mean number of synapses per unique connection was
significantly higher between InhTCP** > DistTC compared to other
targets (Fig. 2p) (3.6 versus 1.6 synapses per connection; P=1.5x107°,
Student’s t-test) and between InhTC" - PeriTC compared to other
targets (3.1versus 1.5 synapses per connection; P=1.1x107, Student’s
t-test). The location of synapses onto preferred targets was similar
for the two InhTC subgroups, with a median distance from soma of
83.5 um (InhTC**) and 86.2 pm (InhTC™") and no significant differ-
ence in distribution (Kolmogorov-Smirnov test, P= 0.25) (Extended
DataFig. 5). Taken together, both InhTCP** and InhTC™" express their
distinct targeting through increased synapse count, larger synapses
and more synapses per connection.

Dendritic excitatory subclasses with synaptic resolution
Althoughinhibitory neurons have frequently been described as having
dense, non-specific connectivity onto nearby neurons®, many studies
have shown examples not only of layer-specific connectivity*’ but also
of selectivity in spatially intermingled excitatory subpopulations?*%,
Itis unclear the degree to which inhibition is specific, and in general,
the principles underlying which excitatory neurons are inhibited by
which inhibitory neurons are not well understood.
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synapticinputsonly. See Methods for detailed feature descriptions. ¢, Uniform
manifold approximation and projection (UMAP) of neuron features coloured
by anatomical cluster. Inset shows number of cells per cluster.d, Example
morphologies for each cluster.Scalebar, 500 pm. e, Somadepthofcellsineach
anatomical cluster. f, Median linear density of input synapses across dendrites
by M-type.g, Median synapse size (Methods).Infand g, coloured dots indicate
single cells; black dotsand error barsindicate abootstrapped (n=1,000)
estimate of the medianand 95% confidenceinterval. a.u., arbitrary units.

To address these questions, we first anatomically characterized
excitatory neurons subclassesin the EM data. Previous approaches to
data-driven clustering of excitatory neuron morphology used dendritic
shape®®, but the EM data also has the location and size of all synaptic
inputs (Fig. 3a). We reasoned that such synaptic features would help
characterize the landscape of excitatory neurons, because synapses
directly reflecthow neuronsinteract with one another. We assembled a
suite of 29 features to describe each cell, including synapse properties
such median synapse ssize, skeleton qualities such as total branchlength
and spatial properties characterizing the distribution of synapses with
depth (Fig.3band Methods). The synapse-detection algorithm did not
distinguish between excitatory and inhibitory synapses, and thus all
synapse-based measuresincludebothtypes of synapses. We performed
an unsupervised consensus clustering of these features (Fig. 3b-d),
identifying 18 ‘morphological types’ (M-types; Methods).

To relate this landscape to known cell types, we compared M-type
classifications to expert labels of layer and long-range projection
type (intratelencephalic/intracortical (IT); extratelencephalic/
subcortical-projecting (ET), near-projecting (NP), corticothalamic
(CT))*. Each layer contained several M-types, some spatially inter-
mingled and others separating into subdomains in the layer (Fig. 3e).
M-types were named by the dominant expert label (Extended Data
Fig. 6), with M-types in the same layer being ordered by projection
subclass and average soma depth. For clarity, we use the letter ‘L’ in
the name of M-types (which may include some cells outside the given
layer) and the word ‘layer’ to refer to a spatial region. Upper and lower
layer 2/3 emerged as having distinct clusters, which we denoted ‘L2’
and ‘L3, respectively. Layer 6 had the most distinct M-types, broadly
splitinto two categories: those with short orinverted apical dendrites
(Léshort), consistent with IT subclasses; and those with tall apical and
narrow basal dendrites (L6tall), consistent with CT subclasses®. It was
not possible to unambiguously label some layer 6 neurons as either IT



or CT onthe basis of anatomy alone, but 99% (n = 142 0of 143) of manually
assigned CT cells fell into one of the L6tall M-types.

Most M-types had visually distinguishable characteristics (Fig.3d and
Extended DataFig.2), butinsome cases subtle differencesin skeleton
features were differentiated by stark differences in synaptic properties.
Forexample, the two layer 2 M-types are visually similar, although L2a
had a29% higher overall dendritic length (L2a, 4,532 pm; L2b, 3,510 pm).
However, L2a cells had 80% more synaptic inputs than L2b cells (L2a,
4,758;1.2b, 2,649),a40% higher median synapse density (L2a,1.04 syn-
apses per micrometre; L2b, 0.72 synapses per micrometre) (Fig. 3f,g)
and awider distribution of synapse sizes (Extended Data Fig.1). Median
synapse size turned out to differ across M-types, often matching layer
transitions (Fig. 3g and Extended Data Fig. 1). Strikingly, L5 NP cells
wereoutliers across synaptic properties, with the fewest total dendritic
inputs, lowest synaptic input density and among the smallest synapses
(Fig. 3g,h). Excitatory M-types thus differed not only in morphology
but also in cell-level synaptic properties like total synaptic input and
local properties like synapse size.

Inhibitory coordination across M-types

Subtype definitions based on structural properties may or may not
be meaningful to cortical circuitry. If different M-types received input
from different inhibitory populations, it would indicate potential for
other circuit differences as well. Having classified inhibitory subclasses
and excitatory M-types, we thus analysed how inhibitionis distributed
across the landscape of excitatory neurons.

The columnreconstructionsincluded 70,884 synapses from inhibi-
tory neurons onto excitatory neurons (Fig. 4a). PeriTCs and DistTCs
were by far the dominant source of inhibition, with individual cells
having as many as 2,118 synapses onto excitatory cells in the column
(mean PeriTC, 581 synapses per presynaptic cell; mean DistTC, 596
synapses per presynaptic cell), whereas SparTCs and InhTCs made far
fewer synapses per presynaptic cell (mean SparTC, 74 synapses; mean
InhTC, 16 synapses; Fig.4b). Inhibition was distributed unequally across
M-types (Fig. 4c). Much of this difference was related to differences
in overall synaptic input. Across M-types, synaptic input at the soma,
whichisalmost completely inhibitory, was strongly correlated (r= 0.96,
P=5x10"°) with net synaptic input onto dendrites, which is primarily
excitatory (Extended Data Fig. 7). Notably, this structural balance of
dendriticand somaticinputalso remained significantacross individual
cellsin16 of 18 M-types.

Similarly, synaptic input from PeriTC and DistTC was also typically
balanced onto individual cells for each M-type. We examined the num-
ber of PeriTC and DistTC inputs onto individual excitatory neurons
for each M-type and found significant positive correlation for 12 of
18 M-types (Fig. 4d), indicating coordinated amounts of inhibitory
synaptic inputs across the entire arbour of target cells. M-types in
upper layers had particularly heterogeneous amounts of inhibitory
input, with L2b cells receiving 60% fewer synapses from intracolumnar
interneurons as spatially intermingled L2a cells (L2b, 37.7 + 0.27 syn-
apses; L2a, 94.8 + 0.58 synapses), whereas L3b cells had nearly as many
intracolumnar inhibitory inputs as much larger LS ET cells. All layer 6
M-types had relatively few intracolumnar inhibitory inputs compared
to upper layers (Fig. 4c). However, note that the columnar sampling
only reflects local sources of inhibition and does not capture the net
effect of potentially wider or narrower spatial domains of inhibitory
integration between layers.

Individual inhibitory neurons often targeted several M-types, indi-
catingthat certain combinations could be inhibited together. For each
inhibitory neuron, we computed the connection density onto each
M-type:thatis, the fraction of cellsin the column that received synaptic
input from it (Fig. 4e). To measure the structure of co-inhibition, we
computed the correlation of inhibitory connection density between
M-types across PeriTCs and DistTCs separately (Fig. 4f). A high
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synapses onto column cells for eachinhibitory subclass. Black dots indicate
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Pvalue < 0.05 after Holm-Sidak multiple test correction. e,f, Pearson correlation
of connectivity density between excitatory M-types on the basis of PeriTCs (e)
and DistTCs (f). Dotted lines indicate groups of cellsroughly in alayer.

correlation would indicate that the same inhibitory neurons that
connected more (or less) to one M-type also connect more (or less) to
another, whereas zero correlation would indicate independent sources
of inhibition between M-types.

These correlations showed several notable features of the structure
of inhibition across layers. In superficial cortex, the layer 2 and layer
3 M-types were strongly correlated in the layer but had modest corre-
lations between layers, indicating largely different sources of inhibi-
tion. Layer 4 M-types, in contrast, were all highly correlated with one
another. Layer 5 M-types were more complex and suggested largely
non-overlapping sources of inhibition, particularly among neurons with
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a, Distribution of synaptic output for allinterneurons, clustered into motif
groups withcommon target distributions. Eachrowis an excitatory target
M-type, each columnisaninterneuron, and colourindicates fraction of
observed synapses fromthe interneuron onto the target M-type. Only
synapses onto excitatory neurons are used to compute the fraction. Neurons
areordered by motif group and somadepth. Bar plots along top indicate
number of synapses onto column cells, with colour showing subclass (asin d).

differentlong-range projection targets. Layer 6 inhibition was virtually
independent from other layers, with DistTC connectivity also distinct
between IT-like L6short cells and CT-like Lé6tall cells. Collectively, both
layer and projection subclass were key factors in shaping co-inhibition.
Importantly, most cotargeting relationships were consistent for both
PeriTC and DistTC output, indicating that cardinal inhibitory subclasses
distribute their output across excitatory neurons with similar patterns
of connectivity.

Cellular contributions of inhibition

How doindividual neurons distribute their output to produce the pat-
terns of inhibition described above? To compare patterns of output, for
every inhibitory neuron, we measured the fraction of synaptic outputs
made onto each M-type (Fig. 5a). This normalized synaptic output
budget reflected factors such as the number of synapses per connec-
tionand the number of potential targets but was not strongly affected
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Bar plotsalongrightindicate number of cellsin target M-type. b,c, Morphology
ofallcellsingroup 4 (b) and group 13 (c), with coloursasina. Scale bar, 500 pm.
d,Somadepthandsubclass for cellsineach motif group. Scale bar,200 pm.

e, Netsynapticoutput distribution across M-types for each motif group.

f, Synapticinput for each M-type from each motif group as afraction of all
within-columninhibition. g, Schematic of motif group connectivity inupper
layers. h, Schematic of motif group connectivity in Layer 5.

by partial arbours. We performed a consensus clustering (Methods),
identifying 18 ‘motif groups’, sets of cells with similar patterns of output
connectivity (Fig. 5aand Extended DataFig. 8). Although this measure-
ment only included synapses with cells in the column, interneurons
made more than four times more synapses onto cells outside the col-
umn than within (Extended Data Fig. 8s,t). To check whether these
results would hold with data outside the column, we used a prediction
of neuronal M-types on the basis of perisomatic features and trained on
column M-type labels*. We found that within-column and predicted
dataset-wide synaptic output budgets were highly correlated (Pearson
r=0.90), confirming that the columnar sampling provided a good
estimate of overall neuronal connectivity (Extended Data Fig. 8u,v).
Each motif group represented a collection of cells that targeted
the same pattern of excitatory cell types. Although some motif
groups focused their output onto single excitatory M-types (such as
group 9) or layers (such as group 7), others spanned broadly (such
as group 6). However, motif groups were not simply individual cell



types. Motif groups (Fig. 5b,c) showed diversity in both individual cell
morphology and connectivity subclasses (Extended Data Figs.3and 8).
Indeed, 150f18 groups (comprising 156 of 163 cells) included neurons
from at least two subclasses, often aligned in cortical depth (Fig. 5d).

Tosummarize the relationship between motif groups and M-types,
we computed both the average output fraction from each motif
group onto each M- type (Fig. 5Se) and the average input fraction of
within-column inhibitory synaptic inputs onto a given M-type from
each motif group (Fig. 5f). Input fraction often followed output frac-
tion for particularly strong connections, but not always. For example,
although group 3 more strongly targeted M-typesin layer 3 than layer
2,itstill contributed asubstantial fraction of allinhibitory layer 2 input.
Inaddition, we found that dominant connections for motif groups had
both high connectivity density and several synapses per connection
(Extended Data Fig. 9), properties that indicate a strong functional
rolein the circuit.

Inhibitory circuits were organized differently in upper layers com-
pared to layers 5and 6. In layers 2-4, each excitatory M-type received
stronginhibition from 2-3 motif groups with overlapping combinations
of targets, some specificinlayersand others that cross layer boundaries
(Fig. 5g).In contrast, most motif groups targeted only single M-typesin
layer 5, although in some cases they also targeted cells in other layers
(Fig. 5h). Connectivity patterns in layer 6 included clear examples of
IT-specific and putatively CT-specific cells, similar to layer 5 projec-
tion subclasses, but also had cells, particularly PeriTCs, that targeted
widely in layer 6.

Synaptic selectivity

Cell type specificity, how concentrated the output onto targets, is typi-
calamonginterneurons described here. However, specificity can arise
in many ways. Different neurons have varying dendritic and axonal
morphologies, synaptic densities and compartment preferences that
constrain potential interactions**2 In addition, they can exhibit cell
type selectivity, which we define as forming synapses with particular
cell types more or less than might be expected on the basis of other
factors such as axon/dendrite overlap.

To differentiate the effects of different contributing factors, for each
interneuron we assembled information on morphology (Fig. 6a), synap-
ticconnectivity and howits output is distributed across compartments
(Fig. 6b) or excitatory M-types (Fig. 6¢) in the column. We developed
aselectivity index by comparing observed synaptic connectivity to a
null modelignoring M-type but capturing compartment preference
and postsynaptic factors such as number of synapses a cell typically
receives and the spatial heterogeneity of potential targets* (Fig. 6d).
Because many of these factors are correlated with target cell properties,
such anullmodel aimed to address confounding between the M-type
labelitself and those structural properties that affect connectivity
more generally: for example, whether cells with higher input synapse
density receive more inhibitory inputs irrespective of their M-type.

We computed aglobal baseline distribution of all synapticinputs onto
all column neuron dendrites, binned by cortical depth (20-um-deep
bins), M-type and target compartment (Fig. 6e and Extended Data
Fig.10). For each interneuron, we computed a shuffled output distri-
bution across M-types by repeatedly sampling connectivity from the
baseline distribution, matching the synapse depth and compartment
targeting distributions for that cell’s outputs. For each connection
from an interneuron onto a potential target M-type, we defined the
selectivity index as theratio of observed connectivity to the median of
the distribution of shuffled connectivity (n =10,000 repeats; Fig. 6f),
reflecting the amount of cell-type-dependent selectivity beyond the
factorsincluded in the null model. Although this sampling included
both excitatory and inhibitory synapses, previous studies****and our
dataindicate that excitatory and inhibitory inputs are proportional to
oneanother, evenatthelevel ofindividual cells (Extended Data Fig. 7).

Because motif groups had common specificity by definition, we
asked if cells in motif groups had common patterns of selectivity as
well (Fig. 6g). We computed the median selectivity index for each
M-type/motif group pair, setting non-significant selectivity index
values to 1 (Fig. 6h). We found that although 17 of 18 motif groups
showed consistent positive or negative selectivity for some targets,
in many cases highly specific connectivity was not associated with
increased selectivity. For example, group 1is highly specific to layer
2targets but surprisingly did not show consistent positive selectivity
for them (Extended Data Fig. 10). Examination of each constraint of
the null model—synapse abundance of different targets, presynaptic
compartment specificity and presynaptic depth distribution—sug-
gested that this was because of group 1axons having a narrow spatial
distribution of axons that strongly overlapped layer 2 targets, which
for many cells was sufficient to explain their connectivity (Extended
Data Fig. 10). This effect was more pronounced for PeriTCs, which
tended to target a more compact spatial domain with less overlap
between M-types. In contrast, for DistTCs, the increased spatial over-
lap of distal and apical dendrites of different M-types required more
selectivity to explain their connectivity (Extended Data Fig. 10). Col-
lectively, this suggests that to achieve specific targeting patterns,
interneurons both project their axons to precise spatial domains
and selectively favour or disfavour making synapses with specific
targets, with therelative contribution of these factors differing across
cell types.

Discussion

Here we generated adetailed map of neuronal structure and inhibitory
connectivity in a column of visual cortex using EM. Using synaptic
propertiesinaddition to traditional morphological features, we found
a collection of excitatory M-types with distinct patterns of inhibitory
input, demonstrating that anatomical distinctions are reflected in
thelocalinhibitory circuit. We use the term ‘motif groups’ to describe
this organization of inhibitory neurons—a diverse collection of cells,
extending beyond the concept of cell types, that target specific com-
binations of M-types’ perisomatic and dendritic compartments. The
distribution of inhibitory motif groups also offers insights into the
functional relationships of excitatory cell types.Inlayers 5and 6, each
projection subclass (IT, ET, NP and CT) had a collection of inhibitory
cells for which they were the predominant target. This affords the net-
work the potential to individually control each projection subclass via
selectiveinhibitionboth at the somaand across dendrites, potentially
with different inhibitory types active under different network condi-
tions and behavioural states.

Cell connectivity cards

Although motif groups described the broad organization of groups
of cells, individual interneurons showed fascinating but idiosyncratic
structural properties. To concisely convey individual cell properties,
we summarized morphology and connectivity into ‘connectivity cards’
(Fig. 6i-1). Individual cards can show unique features that were not
clear from groups alone, such as extreme specificity (Fig. 6i) or dif-
ferent patterns of translaminar connectivity (Fig. 6j-1). An atlas for all
interneurons can be found in Supplementary File 1.

Sublaminar inhibitory specificity

This question of inhibitory specificity has been perhaps best stud-
iedin layer 5, with its highly distinct ET and IT excitatory projection
suclasses®. For dendrite-targeting cells, precise genetic targeting of
layer 5SST subtypes identified distinct cell types that targeted ET ver-
sus IT cells?. In addition, developmental perturbation altering ET or
IT neurons has suggested that they have different perisomatic input
as well, with PV cells preferentially targeting ET and cholecystokinin
neurons targeting IT**8, Here, ET cells received input from a larger
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Fig. 6 |Synapticselectivity and cell connectivity cards. a, Example
inhibitory neuron (cellID 303085). Axoninblue, dendriteinred. Scale bar,

200 um. b, Distribution of synaptic outputs across target compartments for
thecellina.c, Distribution of synaptic outputs across M-types (bar length) and
compartments (bar colours) forthe cellina. d, Selectivity index values for the
cellina, measured as the ratio of observed synapse count to median shuffled
synapse count for anull model as described below. Error bars indicate 95th
percentileinterval. Coloured dots (blue, low; orange, high) indicate significant
differences (two-sided shuffle, P < 0.05) relative to the shuffle distribution
after Holm-Sidak multiple test correction. e, As abaseline synapse distribution
for nullmodels, all synaptic inputs onto all cellsin the column were binned by
compartment, depthand M-type. (See Extended Data Fig. 10 for more details.)
f, Shuffled connectivity for the cellinawas computed by sampling from the
baseline synapse distribution with the observed depth and compartmentbins

number and diversity of inhibitory cells than layer 51T, despite being
less numerous, indicating that as the primary subcortical output cell,
ET neurons have alarger and more diverse inhibitory network than IT
cells. ET cells were also frequently involved in translaminar circuits,
with several examples of both ascending and descending translaminar
PeriTCs and ascending DistTCs that targeted both L2/3 neurons and
ETs but not ITs, indicating bidirectional pathways for coordinated
inhibition. In addition, layer 5 IT and NP cells had distinct collections
of inhibitory neurons. Projection-specific inhibition was also found
in layer 6 between putative IT and CT neurons. In contrast to layer 5,
however, there was a combination of both projection-specific and
broad layer 6 inhibition. These connectivity patterns afford the cor-
tical network the potential to selectively inhibit distinct projection
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and counting synapses onto each M-type across all bins (n=1,000 shuffles).
Example shuffle values for L3a (top) and L4a (bottom) M-types versus
observed synapses areshown. g, Selectivity index for all cellsin motif group 5.
Non-significant values are assigned avalue of 1. The cellin ais highlighted

by ablackbox.h, Direction of the median cell’s selectivity index fromeach
motif group onto each M-type. Orange indicates more connected, blue less
connected. Connections where the median selectivity index was non-
significant areindicated with adot.i-1, Compact cell connectivity cards
encapsulating anatomy (left), M-type target distribution (middle, bar length),
compartment targeting (middle, bar colours asind) and selectivity index
(right, asing) for four example neurons: an LSET-specific basket cell (i), adeep-
layer-specific upper layer neuron (j), atranslaminar basket cell (k) and a
translaminar layer 6 interneuron (I). Full connectivity cards for all cells canbe
foundinSupplementary File1.Scalebars,200 pum. Sl, selectivity index.

subclasses, potentially with different cell types active under different
network states or using different plasticity rules.
Eveninlayers 2-4, with onlyIT cells, there was significant sublaminar
specificity. The differential inhibition of layer 2 versus layer 3 cells
suggests that are functionally distinct subnetworks with independ-
ent modulation. This could mirror depth-dependent differences in
intracortical projection patterns*, similar to prefrontal cortex, where
amygdala-projecting layer 2 cells receive inhibition that selectively
avoids neighbouring cortical-projecting cells?**8, Another possibil-
ity is that they are well posed to differentially modulate top-down
versus sensory-driven activity®®*, as layer 3 receives more sensory
thalamicinputthanlayer 2 (ref.11). More generally, the distinct inhibi-
tory environments of upper and lower layer 2/3 have been observed



across cortex, from primary sensory areas* to higher-order associa-
tionareas®, indicating that they may reflect amore general functional
specialization.

Basket cell disinhibition

Many VIP interneurons preferentially inhibit other inhibitory neurons.
Such disinhibitory VIP neurons have been shown to strongly target SST
neurons across cortical areas®** and, to alesser extent, fast spiking or
PV neurons®**, Here we found two classes of disinhibitory specialists
with distinct and specific targets: one preferring putative SST cells and
one preferring basket cells.

Fast spiking or PV basket cells areinhibited by many sources, includ-
ing other PV cells®***, SST cells*® and even neurogliaform cells*®. How-
ever, the basket-targeting disinhibitory specialists differ from these
other pathways in their specificity—not only do they distribute most
synaptic output onto basket cells instead of any other inhibitory or
excitatory targets but they do so with larger synapses and more syn-
apses per connection. This highly specific targeting offers anintriguing
pathway to control basket-cell-mediated excitatory gain or synchrony
withoutsignificantly affecting other neuronal populations. Determin-
ing what conditions cause these cells to be active will be important for
understanding their functional effect. Future experiments will also be
required to determine their molecular subclass.

Limitations

The principal concernis the generalizability of data, because it comes
from a single animal, in one location near the edge of VISp, and has at
most a few examples per cell type. However, companion work from
the same dataset focusing on several examples of morphologically
defined cell types shows consistent target preferences®-’, and our
dataalso agree withrecent functional measurements of type-specific
connectivity of SST cells*. We thus expect that the broad connectivity
results will apply generally, although it will be important to measure
the variability across individual cells, distinct animals and locations
in cortex.

This study also only considered cells and connectivity in a narrow
range of distances and limited volume. If cells change their connectivity
with distance, as has been seen in excitatory neurons®, this would bias
the observed connectivity distributions. Extending a similar analysis
across amuch wider extent will be important for building a complete
map of inhibitory cell types and more firmly establishing the nature
of inhibitory motif groups.

Multimodal cell typing with EM

The M-types found here from morphology and synaptic properties
generally agree with approaches from morphology alone® or in com-
bination with other modalities®’, in particular distinguishing cells in
upper layer and lower layer 2/3 and differentiating between projec-
tion subclasses. Sublaminar variation is also found in transcriptomic
studies, with several excitatory clusters in upper layer 2/3 in VISp®>®!
and variationin other layers, althoughitis not clear if they correspond
precisely to the M-types observed here.

Tofacilitate subsequent analysis of anatomy, connectivity and ultra-
structure, all EM data, segmentations, skeletons and tables of synapses
and cell types are available are available via the MICrONS-Explorer
website?. However, making the best experimental use of EM data will
require linking EM to genetic tools. Patch-seq, which generates com-
bined electrophysiology, transcriptomic and morphological data,
was used in acompanion study to quantitatively link particular Marti-
notti cells from EM to specific transcriptomic subtypes®. At present,
however, transcriptomic clusters often have diverse morphologies
and probably diverse connectivity®®. This suggests that the process
of linking structural and molecular datasets should aim to become
bidirectional, not only decorating EM reconstructions with transcrip-
tomicinformationbutalso using EM toidentify cell types with distinct

connectivity and analysing Patch-seq data to identify distinguishing
transcriptomic markers or collecting more examples.

Online content

Any methods, additional references, Nature Portfolio reporting summa-
ries, source data, extended data, supplementary information, acknowl-
edgements, peer review information; details of author contributions
and competinginterests; and statements of data and code availability
are available at https://doi.org/10.1038/s41586-024-07780-8.
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Methods

This dataset was acquired, aligned and segmented as part of the
larger MICrONS project. Methods underlying dataset acquisition are
described in full detail elsewhere**>%*, and the primary dataresource
is described in a separate publication®. We repeat some of the meth-
odological details for the dataset here for convenience.

Animal preparation for EM

Allanimal procedures were approved by the Institutional Animal Care
and Use Committee at the Allen Institute for Brain Science or Baylor
College of Medicine. Neurophysiology data acquisition was conducted
atBaylor College of Medicine before EM imaging. Afterwards the mice
were transferred tothe Allen Institute in Seattle and keptin a quarantine
facility for 1-3 days, after which they were euthanized and perfused.
Allresults described here are from asingle male mouse, age 64 days at
onset of experiments, expressing GCaMPé6s in excitatory neurons via
SLC17a7-Cre and Ail62 heterozygous transgenic lines (recommended
and generously shared by Hongkui Zeng at the Allen Institute for Brain
Science;JAX stock 023527 and 031562, respectively). Two-photon func-
tionalimaging took place between P75and P80 followed by two-photon
structuralimaging of cell bodies and blood vessels at PS0. The mouse
was perfused at P87.

Tissue preparation

After optical imaging at Baylor College of Medicine, candidate mice
were shipped via overnight air freight to the Allen Institute. Mice were
transcardially perfused with a fixative mixture of 2.5% paraformal-
dehyde, 1.25% glutaraldehyde and 2 mM calcium chloride, in 0.08 M
sodium cacodylate buffer, pH 7.4. Athick (1,200 pm) slice was cut witha
vibratome and post-fixed in perfusate solution for 12-48 h. Slices were
extensively washed and prepared for reduced osmium treatment based
onthe protocol of ref. 65. All steps were performed at room tempera-
ture, unless indicated otherwise. The first osmication step involved
2% osmium tetroxide (78 mM) with 8% v/v formamide (1.77 M) in0.1M
sodium cacodylate buffer, pH 7.4, for 180 min. Potassium ferricyanide
2.5% (76 mM) in 0.1 M sodium cacodylate, 90 min, was then used to
reduce the osmium. The second osmium step was at a concentration
of 2% in 0.1 M sodium cacodylate for 150 min. Samples were washed
withwater and thenimmersed in thiocarbohydrazide for further inten-
sification of the staining (1% thiocarbohydrazide (94 mM) in water,
40 °C, for 50 min). After washing with water, samples were immersed
in a third osmium immersion of 2% in water for 90 min. After exten-
sive washing in water, Walton’s lead aspartate (20 mM lead nitrate in
30 mM aspartate buffer, pH 5.5, 50 °C, 120 min) was used to enhance
contrast. After two rounds of water wash steps, samples proceeded
through a graded ethanol dehydration series (50%, 70%, 90% w/v in
water, 30 min each at 4 °C, then 3 x100%, 30 min each at room tem-
perature). Two rounds of 100% acetonitrile (30 min each) served as a
transitional solvent step before proceeding to epoxy resin (EMS Hard
Plus). A progressive resin infiltration series (1:2 resin:acetonitrile (for
eample, 33% v/v), l:1resin:acetonitrile (50% v/v), 2:1resin acetonitrile
(66% v/v) and then 2 x 100%resin, each step for 24 h or more, onagyro-
tary shaker), was done before final embedding in 100% resin in small
coffin moulds. Epoxy was cured at 60 °C for 96 h before unmoulding
and mounting on microtome sample stubs. The sections were then
collected at anominal thickness of 40 nm using a modified ATUMtome
(RMC/Boeckeler®?) onto six reels of grid tape®*°,

Transmission EM imaging

The parallel imaging pipeline used in this study®® used a fleet of trans-
mission electron microscopes that had been converted to continu-
ous automated operation. It was built on a standard JEOL 1200EXII
120 kV transmission electron microscope that had been modified with
customized hardware and software, including an extended column

and a custom electron-sensitive scintillator. A single large-format
CMOS (complementary metal-oxide-semiconductor) camera out-
fitted with a low-distortion lens was used to grab image frames at
an average speed of 100 ms. The autoTEM was also equipped with a
nano-positioning sample stage that offered fast, high-fidelity mon-
taging of large tissue sections and a reel-to-reel tape translation sys-
tem that locates each section using index barcodes. During imaging,
the reel-to-reel GridStage moved the tape and located the targeting
aperture through its barcode and acquired a 2D montage. We per-
formed quality control on all image data and reimaged sections that
failed the screening.

Image processing

Volume assembly. The volume assembly pipeline is described in detail
elsewhere®®*, Briefly, the images collected by the autoTEMs are first
corrected for lens distortion effects using nonlinear transformations
computed from a set of 10 x 10 highly overlapping images collected
atregular intervals. Overlapping image pairs are identified in each
section, and point correspondences are extracted using features
extracted using the scale-invariant feature transform. Montage trans-
formation parameters are estimated per image to minimize the sum
of squared distances between the point correspondences between
these tileimages, with regularization. Adownsampled version of these
stitched sections is produced for estimating a per-section transfor-
mation that roughly aligns these sections in three dimensions. The
rough aligned volume is rendered to disk for further fine alignment.
The software tool used to stitch and align the dataset is available on
GitHub (https://github.com/Alleninstitute/render-modules). To fine
align the volume, we needed to make the image processing pipeline
robust to image and sample artefacts. Cracks larger than 30 um (in
34 sections) were corrected by manually defining transforms. The
smaller and more numerous cracks and folds in the dataset were
automatically identified using convolutional networks trained on
manually labelled samples using 64 x 64 x 40 nm?’resolution images.
The same was done to identify voxels containing tissue. The rough
alignment wasiteratively refined ina coarse-to-fine hierarchy® using
anapproach based on a convolutional network to estimate displace-
ments between a pair of images®®. Displacement fields were estimated
between pairs of neighbouring sections and then combined to produce
afinal displacement field for each image to further transform the
image stack. Alignment was refined first using 1,024 x 1,024 x 40 nm?
images and then 64 x 64 x 40 nm?®images. The composite image of
the partial sections was created using the tissue mask previously
computed.

Segmentation. Theimage segmentation pipelineis fully describedin
ref. 63. Remaining misalignments were detected by cross-correlating
patches of image in the same location between two sections after
transforming into the frequency domain and applying a high-pass
filter. Combining with the tissue map previously computed, a ‘seg-
mentation output mask’ was generated that sets the output of later
processing steps to zero in locations with poor alignment. Using pre-
viously described methods®’, a convolutional network was trained
to estimate intervoxel affinities that represent the potential for neu-
ronal boundaries between adjacent image voxels. A convolutional
network was also trained to perform a semantic segmentation of
the image for neurite classifications, including (1) soma + nucleus,
(2) axon, (3) dendrite, (4) gliaand (5) blood vessel. Following the methods
described inref. 70, both networks were applied to the entire dataset
at 8 x 8 x40 nm®in overlapping chunks to produce a consistent predic-
tion of the affinity and neurite classification maps, and the segmenta-
tion output mask was applied to predictions. The affinity map was
processed with a distributed watershed and clustering algorithm to
produce an oversegmented image, where the watershed domains are
agglomerated using single-linkage clustering with size thresholds”72,
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The over-segmentation was then processed by a distributed mean
affinity clustering algorithm””? to create the final segmentation.

For synapse detection and assignment, a convolutional network
wastrained to predict whether a given voxel participatedina synaptic
cleft. Inference on the entire dataset was processed using the meth-
ods described in ref. 70 using 8 x 8 x 40 nm’ images. These synaptic
cleft predictions were segmented using connected components, and
components smaller than 40 voxels were removed. A separate network
was trained to perform synaptic partner assignment by predicting the
voxels of the synaptic partners given the synaptic cleft asan attentional
signal™. This assignment network was run for each detected cleft, and
coordinates of both the presynaptic and postsynaptic partner predic-
tions were logged along with each cleft prediction.

For nucleus detection?, a convolutional network was trained to
predict whether a voxel participated in a cell nucleus. Following the
methods describedinref. 70, anucleus prediction map was produced
on the entire dataset at 64 x 64 x 40 nm®.

Column description and cell classes

The column borders were found by manually identifying aregion in

primary visual cortex that was far from both dataset boundaries and

the boundaries with higher-order visual areas. A100 x 100 pm box
was placed on the basis of layer 2/3 and was extended along the y axis
of the dataset.

While analysing data, we observed that deep layer neurons had
apical dendrites that were not oriented along the most direct pia-
to-white-matter direction, and we adapted the definition of the column
toaccommodate these curved neuronal streamlines. Using a collection
oflayer 5ET cells, we placed points along the apical dendrite to the cell
body and then along the primary descending axon towards white mat-
ter. We computed the slant angle as two piecewise linear segments, one
alongthe negative y axis tolower layer 5wherelittle slant was observed,
and one along the direction defined by the vector-averaged direction
ofthelabelled axons. We believe the slant to be a biological feature of
the tissue and not a technical artefact for several reasons:

1. Thecurvatureisnotaligned to asectioning plane or associated with
shearing or other distortionin the imagery, making it unlikely to be
aresult of the alignment process.

2. Blood vessel segmentation does not show a large, correlated dis-
tortion in deep layers, making it unlikely to be a result of mechani-
cal stress on the tissue (https://ngl.microns-explorer.org/#!gs://
microns-static-links/mm3/blood_vessels.json). Moreover, it is
unclear why such stress would affect only layer 5b and below.

3. Individual examples of neurons with slanted morphologies can
be found among single-cell reconstructions in the literature: for
example, several descending bipolar VIP interneurons and layer 6
pyramidal cellsinref.16. It is not possible to determine whether these
individual cases correspond to a larger population of correlated
arbours, but it suggests these morphologies are not atypical.

4. Similar curvature hasbeen observedin other large EM datasets from
visual cortex (datanot shown) and light level morphological recon-
structions, particularly among layer 6 pyramidal cells.

Using these boundaries and previously computed nucleus cen-
troids?, we identified all cells in the columnar volume. Coarse cell
classes (excitatory, inhibitory and non-neuronal) were assigned on
the basis of brief manual examination and rechecked by subsequent
proofreading and automated cell typing*°. To facilitate concurrent
analysis and proofreading, we split all false merges connecting any
column neurons to other cells (as defined by detected nuclei) before
continuing with other work.

Proofreading
Proofreading was performed primarily by five expert neuroanato-
mists using the CAVE infrastructure’ and a modified version of

Neuroglancer”. Proofreading was aided by on-demand highlighting
of branch points and tips on user-defined regions of a neuron on the
basis of rapid skeletonization (https://github.com/AllenInstitute/
Guidebook). This approach quickly directed proofreader attention
to potential false merges and locations for extension, as well as allowed
aclearrecord of regions of an arbour that had been evaluated.

For dendrites, we checked all branch points for correctness and all tips
toseeifthey could be extended. False merges of simple axon fragments
onto dendrites were often not corrected in the raw data because they
could be computationally filtered for analysis after skeletonization (see
below). Detached spine heads were not comprehensively proofread,
and previous estimates place the rate of detachment at roughly 10-15%.
Using this method, dendrites could be proofread inabout 10 minper cell.

Forinhibitory axons, we began by ‘cleaning’ axons of false merges by
looking at all branch points. We then performed extension of axonal
tips until either their biological completion or data ambiguities, par-
ticularly emphasizing all thick branches or tips that were well-suited
to project to new laminar regions. For axons with many thousands of
synaptic outputs, we followed many but not all tips to completion once
primary branches were cleaned and established. For smaller neurons,
particularly those with bipolar or multipolar morphology, most tips
were extended to the point of completion or ambiguity. Axon proof-
reading time differed significantly by cell type not only because of
differential total axon length but also because of axon thickness dif-
ferences that resulted in differential quality of autosegmentations,
with thicker axons being of higher initial quality. Typically, inhibitory
axon cleaning and extension took 3-10 h per neuron.

Thelack of segmentationin the top 10 pm of layer 1 truncates some
apical tufts and limited reconstruction quality of layer linterneurons.
For those excitatory neurons with extensive apical tufts, particularly
layer 2and LSET cells, the reconstructions here might miss both distin-
guishing characteristics and sources of inhibitory input in that region.
Similarly, axons in deep layer 6 were generally less complete because
of alignment quality in white matter.

Manual cell subclass and layer labels

Expert neuroanatomists further labelled excitatory and inhibitory
neurons into subclasses. Layer definitions were based on considera-
tions of both cell body density (in analogy with nuclear staining) sup-
plemented by identifying kinks in the depth distribution of nucleus
size near expected layer boundaries*.

For excitatory neurons, the categories used were Layer 2/3-IT, Layer
4-IT, Layer 5-IT, Layer 5-ET, Layer 5-NP, Layer 6-IT, Layer 6-CT and Layer
6b (‘L6-WM’) cells. Excitatory expertlabels did not affect analysis but
were used as the basis for naming morphological clusters. Layer 2/3
and upper Layer 4 cells were defined on the basis of dendritic mor-
phology and cell body depth. Layer 5 cells were similarly defined by
cellbody depth, with projection subclasses distinguished by dendritic
morphology following ref. 8 and classical descriptions of thick (ET) and
thin-tufted (IT) cells. Layer SET cells had thick apical dendrites, large
cellbodies, numerous spines and apronounced apical tuft, and deeper
ET cellshad many oblique dendrites. Layer 5IT cellshad more slender
apical dendrites and smaller tufts, fewer spines and fewer dendritic
branches overall. Layer 5 NP cells corresponded to the ‘Spiny 10’ sub-
class described in ref. 8; these cells had few basal dendritic branches,
eachverylongand with few spines or intermediate branch points. Layer
6 neurons were defined by cell body depth, and some cells were able
tobefurtherlabelled asIT or CT by humanexperts. Layer 6 pyramidal
cells with stellate dendritic morphology, inverted apical dendrites or
wide dendriticarbours were classified as IT cells. Layer 6 pyramidal cells
with small and narrow basal dendrites, an apical dendrite ascending to
Layer 4 or Layer1and amyelinated primary axon projecting into white
matter were labelled as CT cells.

For inhibitory neurons, manual cell typing considered axonal and
dendritic morphology as well as connectivity. Cells that primarily
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contacted soma or perisomatic regions were labelled as basket cells.
Cellsthat made arbours that extended up to layer 1 or formed adense
plexus and primarily targeted distal dendrites were labelled as putative
SST cells. Cells that remained mostly in layer 1or had extensive arbouri-
zation and many non-synaptic boutons were labelled as putative Id2 or
neurogliaform cells. Finally, cells with a bipolar dendritic morphology
oramultipolar dendritic morphology and output onto other inhibitory
neurons were labelled as putative VIP cells. Several cells, particularly
inlayer 6, had anambiguous subclass assignment, typically when their
connectivity was not basket-like but their morphology was also not
similar to upper layer Martinotti or non-Martinotti cells.

Skeletonization

To rapidly skeletonize dynamic data, we took advantage of the
PyChunkedGraphdatastructure that collects all supervoxels belong-
ing to the same neuronal segmentation into 2 x 2 x 20 pm ‘chunks’
with a unique ID and precisely defined topological adjacency with
neighbouring chunks of the same object. Each chunkis called a‘level 2
chunk’,and the complete set of chunks for aneuron and their adjacency
we call the ‘level 2 graph’ on the basis of its location in the hierarchy
of the PyChunkedGraph datastructure?. We precompute and cache a
representative central point in space and the volume and the surface
areafor each level 2 chunk and update this data when new chunks are
created because of proofreading edits. Using the level 2 graph and
assigning edge lengths corresponding to the distance between the
representative points for each vertex (that is, each level 2 chunk), we
run the TEASAR algorithm (10 pm invalidation radius) to extract a
loop-free skeleton. Each of the level 2 vertices removed by the TEASAR
algorithm is associated with its closest remaining skeleton, making it
possible to map surface area and volume data to the skeleton. Typical
edges between skeleton vertices are about 1.7 pm, and new skeletons
canbe computed de novoinabout 10 s, making them useful for analysis
over length scales of tens of micrometre or larger.

Torepresent the cellbody, afurther vertex was placed at thelocation
of the nucleus centroid, and all vertices within an initial radius and
topologically connected to centroid were collapsed into this vertex
with associated data mapping. The radius was determined for each
neuron separately by consideration of the volume of each cell body.
A companion work*® computed the volume of each cell body, and we
generated an effective radius on the basis of the sphere with the same
volume. To ensure that our values captured potentially lopsided cell
bodies, we padded this effective radius by a further factor of 1.25. Skel-
etons were rooted at the cell body, with ‘downstream’ meaning away
from soma and ‘upstream’ meaning towards soma. Each synapse was
assigned to skeleton vertices on the basis of the level 2 chunk of its
associated supervoxel. For each unbranched segment of the skeleton
(thatis, between two branch points or betweenabranch pointandend
point), we computed an approximate radius ron the basis of acylinder
with the same path length L and total volume V associated with that

segment: (r=./V/muL).

Axon/dendrite classification

To detect axons, we took advantage of the skeleton morphology, the
location of presynaptic and postsynaptic synapses and the clear seg-
regation between inputs and outputs of cortical neurons. For inhibi-
tory cells, we used synapse flow centrality” to identify the start of the
axon as the location of maximum paths along the skeleton between
sites of synaptic input and output. Two inhibitory neurons had two
distinct, biologically correct axons after proofreading (cell IDs 258362
and 307059). For these cells, we ran this method twice, masking off
the axon found after the first run, to identify both. For excitatory
neurons that did not have extended axons, there were often insuffi-
cient synaptic outputs on their axon for this approach to be reliable.
Excitatory neurons with a segregation index’” of 0.7 (on a scale with
O indicating random distribution of input and output synapses and

lindicating perfect input/output segregation) or above were con-
sidered well-separated, and the synapse flow centrality solution was
used. For cells with a segregationindex less than 0.7, we instead looked
for branches near the soma with few synaptic inputs. Specifically, we
tookidentified all skeleton vertices within 30 um of the cell body and
looked at the distinct branches downstream from this region. For each
branch, we computed the total path length and the total number of
synapticinputstogetalinearinput density. Branches with botha path
length more than 20 pm and an input density less than 0.1 synaptic
inputs per micrometre were labelled as being axonal and filtered out
of subsequent analysis.

We further filtered out any remaining axon fragments merged onto
pyramidal cell dendrites using a similar approach. We identified all
unbranched segments (regions between two branch points or between
abranch pointand end point) on the non-axonal region of the skeleton
and computed their input synapse density. Starting from terminal
segments (that is, those with no downstream segments), we labelled
asegment as a ‘false merge’if it had an input density less than 0.1 syn-
aptic inputs per micrometre. This process iterated across terminal
segments until all remaining had aninput density of atleast 0.linputs
per micrometre. Falsely merged segments were masked out of the
skeleton for all analysis.

Excitatory dendrite compartments

We assigned all synaptic inputs onto excitatory neurons to one of four
compartments: soma, proximal dendrite, distal basal dendrite and
distal apical dendrite. The most complex part was distinguishing the
basal dendrite from the apical dendrite. Although easy in most cases
for neuronsinlayer3-5because of the consistent nature of apical den-
drites being single branches reaching towards layer 1, this is not true
everywhere. In upper layer 2/3, cells often have several branches in
layer1equally consistent with apical dendrites, and inlayer 6 there are
often cells with apical dendrites that stop in layer 4 and that point
towards white matter or even that lack a clear apical branch entirely.
To objectively and scalably define apical dendrites, we built a classifier
that could detect between zero and three distinct apical branches per
cell. Following the intuition from neuroanatomical experts, we used
features onthebasis of the branch orientation, locationin space, rela-
tive location compared to the cell body and branch-level complexity.
Specifically, we trained arandom forest classifier to predict whether
askeletonvertex belonged to an apical dendrite on the basis of several
features: depth of vertex, depth of soma, difference in depth between
soma and vertex, vertex distance to soma along the skeleton, vertex
distance to farthest tip, normalized vertex distance to tip (between O
and 1), tortuosity of path to root, number of branch points along the
pathtoroot, radial distance from soma, absolute distance from soma
and anglerelative to vertical between the vector fromsomato vertex.
We aggregated predictions in each branch by summing the log-odds
ratio from the model prediction, with the netlog-odds ratio saturating
at +200. Finally, for each branch i with aggregated odds ratio R;,
we compare branches to one another via a soft-max operation:
Si= exp(Ri/SO)/Zj exp(R;/50). Branches with amaximumtip length of
less than 50 pm were considered too short tobe a potential apical den-
drite and excluded from consideration and notincludedin the denom-
inator. Branches with both R; > 0 (evidence is positive towards being
apical) and ;> 0.25 were defined to be apical. Note that the soft-max
was chosento allow multiple apical branches if they had similar aggre-
gated odds ratios, which was found to be necessary for upper layer
pyramidal neurons. Training datawere selected from aninitial 50 ran-
dom cells, followed by a further 33 cells chosen representing cases
where the classifier did not perform correctly. Performance on both
randomand difficult cells had an F1-score 0of 0.9297 (86 true positives,
599 true negatives, 2 false positives and 11 false negatives) on the basis
ofleave-one-out cross validation, with at least one apical dendrite cor-
rectly classified for all cells.
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Compartment labels were propagated to synapses on the basis of
the associated skeleton vertices. Somasynapses were all those associ-
ated with level 2 chunks in the soma collapse region (see the section
‘Skeletonization’). Proximal dendrites were those outside of the soma
but within 50 pm after the start of the branch. Distal basal synapses
were all those associated with vertices more distant than the proximal
threshold but not on an apical branch. Apical synapses were all those
associated with vertices more distant than the proximal threshold and
onan apical branch.

Inhibitory feature extraction and clustering

Many classical methods of distinguishing interneuron classes are based

on how cells distribute their synapses across target compartments.

Following proofreading, expert neuroanatomists attempted to classify

allinhibitory neurons broadly as ‘basket cells’, ‘SST-like cells’, ‘'VIP-like

cells’and ‘neurogliaform/layer 1’ cells on the basis of connectivity prop-
ertiesand morphology. Although150 cells were labelled on this basis,

afurther 13 neurons were considered uncertain (primarily in layer 6),

andinsome cases manual labels were low confidence. To classify inhibi-

tory neuronsinadata-drivenmanner, we thus measured four properties
of how cells distribute their synaptic outputs:

1. The fraction of synapses onto inhibitory neurons.

2. Thefraction of synapses onto excitatory neurons that are onto soma.

3. Thefraction of synapses onto excitatory neurons that are onto proxi-
mal dendrites.

4. The fraction of synapses onto excitatory neurons that are onto distal

apical dendrites.
Because the fraction of synapses targeting all compartments sums
to one, the last remaining property, synapses onto distal basal den-
drites, wasnotindependent and thus was measured but notincluded
as afeature. Inspection of the data suggested two more properties
that characterized synaptic output across inhibitory neurons:

5. Thefraction of synapses that are part of multisynaptic connections,
those with atleast two synapses between the same presynaptic neu-
ron and target neuron.

6. The fraction of multisynaptic connection synapses that were also
within 15 pm of another synapse with the same target, as measured
between skeleton nodes. Note that we evaluated the robustness of
this parameter and found that intersynapse distances from5tomore
than100 pm have qualitatively similar results (Extended Data Fig. 2).

Using these six features, we trained a linear discriminant classifier
on cells with manual annotations and applied it to all inhibitory cells.
Differences from manual annotations were treated not as inaccurate
classifications but rather as a different view of the data.

Excitatory feature extraction and clustering

To characterize excitatory neuron morphology, we computed features

based only on excitatory neuron dendrites and soma. The features

were as follows:

1. Median distance from branch tips to soma per cell.

2. Median tortuosity of the path from branch tips to soma per cell.
Tortuosity is measured as the ratio of path length to the Euclidean
distance from tip to soma centroid.

3. Number of synaptic inputs on the dendrite.

4. Number of synaptic inputs on the soma.

5. Net path length across all dendritic branches.

6. Radial extent of dendritic arbour. We define ‘radial distance’ to be
the distance in the same plane as the pial surface. For every neuron,
we computed a pia-to-white-matter line, including slanted regionin
deep layers, passing throughits cellbody. For each skeleton vertex,
we computed the radial distance to the pia-to-white-matter line at
the same depth. To avoid any outliers, the radial extent of the neuron
was defined to be the 97th percentile distance across all vertices.

7. Median distance to soma across all synaptic inputs.

8. Median synapse size of synaptic inputs onto the soma.
9. Median synapse size of synaptic inputs onto the dendrites.

10. Dynamic range of synapse size of dendrite synaptic inputs. This
was measured as the difference between 95th and fifth percentile
synapse sizes.

11. Shallowest extent of synapses, on the basis of the fifth percentile
of synapse depths.

12. Deepest extent of synapses, on the basis of the 95th percentile of
synapse depths.

13. Vertical extent of synapses, on the basis of the difference between
95th and fifth percentile of synapse depths.

14. Medianlinear density of synapses. This was measured by computing
the net path length and number of synapses along 50 depth bins
fromlayer 1to white matter and computing the median. A linear
density was found by dividing synapse count by path length per
bin, and the median was found across all bins with non-zero path
length.

15. Median radius across dendritic skeleton vertices. To avoid the
regionimmediately around the soma from having a potential out-
lier effect, we only considered skeleton vertices at least 30 pm
from the soma.

Three more sets of features used component decompositions. To
more fully characterize the absolute depth distribution of synaptic
inputs, for each excitatory neuron, we computed the number of syn-
apsesineach of 50 depth bins from the top of layer1to surface of white
matter (binwidth approximately 20 pm). We Z-scored synapse counts
for each celland computed the top six components using SparsePCA.
Theloadings for each of these components on the basis of the net syn-
apse distribution were used as features.

To characterize the distribution of synapticinputs relative to the cell
body instead of cortical space, we computed the number of synapses
in13 soma-adjusted depth bins starting 100 um above and below the
soma. As before, synapse counts were Z-scored, and we computed the
top five components using SparsePCA. The loadings for each of these
components were used as further features.

To characterize the relationship withbranching to distance, we meas-
ured the number of distinct branches as afunction of distance from the
soma at ten distances, every 30 pm starting at 30 pm from the soma
and continuing to 300 pum. For robustness relative to precise branch
point locations, the number of branches were computed by finding
the number of distinct connected components of the skeleton found
in the subgraph formed by the collection of vertices between each
distance value and 10 pm towards the soma. We computed the top
three singular value components of the matrix on the basis of branch
countversus distance for all excitatory neurons, and the loadings were
used as features.

All features were computed after arigid rotation of 5 degrees to
flatten the pial surface and translation to set the pial surface to 0
on the y axis. Features on the basis of apical classification were not
explicitly used to avoid ambiguities on the basis of both biology and
classification.

Using this collection of features, we clustered excitatory neurons
by running phenograph 500 times with 95% of cells included each
time. Phenograph finds a nearest-neighbourhood graph on the basis
of proximity in the feature space and clusters by running the Leiden
algorithm for community detection on the graph. Here we used agraph
onthebasis of ten nearest neighbours and clustered with aresolution
parameter of 1.3. These values were chosen to consistently separate
layer SET, IT and NP cells from one another, a well-established bio-
logical distinction. A coclustering matrix was assembled with each
element corresponding to the number of times two cells were placed
in the same cluster. To compute the final consensus clusters, we per-
formed agglomerative clustering with complete linkage on the basis
of the coclustering matrix, with the target number of clusters set by



aminimum Davies-Bouldin score and a maximum Silhouette score.
Clusters were then named on the basis of the most frequent manually
defined cell type in the cluster and reordered on the basis of median
somadepth. The labelling of cells as layer 2 and layer 3 was formed on
thebasis of somadepthand amorphology with arelatively flat morphol-
ogy, often with no distinct apical trunk, although often apical-tuft-like
branches emitted directly from the cell body. The L2c subclass was
ambiguously defined between the two categories, with cells that had
adistinctapical trunk but with connectivity and other properties that
seemed more similar to layer 2 subclasses.

To compute theimportance of each feature for each M-type, for each
M-type we trained a random forest classifier to predict whether a cell
belonged to it using scikit-learn”. Because the classes were strongly
imbalanced, we used SMOTE resampling to oversample datapoints
from the smaller class. We used the Mean Decrease in Impurity metric,
which quantifies how often a given feature was used in the decision
treeensemble.

Inhibitory connectivity and selectivity

To measureintracolumnar inhibitory connectivity, we first restricted
synaptic outputs to the axon of each inhibitory neuron, as we have not
observed any correctly classified synaptic outputs on dendriticarbours
inthis dataset. One cell with fewer than 30 synaptic outputs was omit-
ted because of insufficient size. All remaining synaptic outputs across
allinterneurons were then filtered to include only those that target
cellsin the column, unless otherwise specified. Each output synapse
was also labelled with the target skeleton vertex, dendritic compart-
mentand M-type of the target neuron on the basis of the compartment
definitions above.

For the inhibitory motif group clustering, for each interneuron we
first computed the number of synapses across each excitatory M-types
in the column. This synaptic output budget was then normalized per
cell to generate a vector for each neuron with elements ranging from
zerotoone.Normalized synaptic output budgets were oversegmented
using k-means (k =20) with Euclidean distances 500 times, and a matrix
of coclustering frequency—thatis, the number of times two cells were
put in the same k-means cluster—between individual cells was com-
puted. Final M-types were found through agglomerative clustering
with complete linkage of the coclustering matrix, scanning from two
to 25 output clusters and selecting a final value of 18 on the basis of
silhouette score and Davies-Bouldin score.

For measuring the synaptic output budget across cell types across
the dataset (that is, inside and outside the column), we used a hierar-
chical classifier on the basis of a collection of perisomatic features
that was trained on the data-driven clustering from the column
sample*®. Only synapses onto object segmentation associated with a
single nucleus and a cell type classification were used. Although most
of these other targets were not proofread, estimates on the basis of
proofread neuronsindicate that 99% of non-proofread input synapses
are accurate*,

To measure inhibitory selectivity in the column, we compared the
M-type distribution of its synaptic outputs to the M-type distribu-
tion of synaptic inputs according to a null model accounting for
cell abundance, synapse abundance and depth. We first generated
abaseline distribution of all 4,504,935 somatic or dendritic synaptic
inputs to all column cells, where each synapse was associated with
aprecise depth, target compartment and M-type. We discretized
synapticinputsinto 50 depth bins spanning pia to white matter, each
covering approximately 20 um and each of the five compartments:
soma, proximal dendrite, basal dendrite, apical dendrite or inhibitory
neuron. For each interneuron, we similarly discretized its synaptic
outputinto the same bins, compartments and M-types. To generate a
randomized output distribution preserving both observed depth and
compartment distributions, we randomly picked synapses from the
baseline distribution with the observed depth bins and compartment

targets but without regard to M-type. We computed 10,000 rand-
omized distributions per interneuron. To get a selectivity index, we
compared the observed number of synapses onto a given M-type to
the median of the number of synapses from the shuffle distribution.
To get a significance for the selectivity index for a given M-type, we
directly computed the two-sided P value of the observed number of
synapses relative to the shuffle distribution for that M-type. P val-
ues were corrected for several comparisons using the Holm-Sidak
methodineachinterneuron for those M-types with non-zero potential
connectivity. Selectivity was only measured in the column because
we did not generate compartment labels for unproofread dendrites
outside of the column.

On connectivity cards, we also show a similar selectivity index on
the basis of compartment rather than M-type. In that case, the shuffled
distribution preserves observed depth and M-type output distributions
but not compartments.

Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

Data for this paper were analysed at materialization version 795.
Synapse tables for column cells, neuronal skeletons and tables for
manual and automatic cell types and connectivity groups are available
at Zenodo (https://doi.org/10.5281/zenodo.7641780)%°. EM imagery
and segmentation can be found at https://www.micronsexplorer.org/
cortical-mm3. Source data are provided with this paper.

Code availability

Analysis codeis available at https://github.com/AllenInstitute/Colum-
nCensusCSM. All analysis was performed in Python v.3.9 using cus-
tom code, making extensive use of CAVEclient (https://github.com/
seung-lab/CAVEclient) and CloudVolume® to interact with datainfra-
structure; MeshParty® to analyse skeletons; and the libraries Matplot-
1ib%, Numpy?®*, Pandas®, Scikit-learn”, Scipy®®, stats-models® and VTK®
for general computation, machine learning and data visualization.
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ofthe compartment classification pipeline. b-d) Pipeline applied toan
examplelayer 3 pyramidal cell. b) Apical probability per vertex. ¢) Branch-level
apical classification. d) Final organization into four dendritic compartments
based onapical classification and distance rules. e) Quantification of quality
ofapical branch classification based onleave-one-out classification witha
training set based on 50 randomly selected cells and 23 cells chosen toimprove
difficult classifications. Each dotisabranch of a test pyramidal cell, colored

redifapicaland blueif notapical. X-axis is the netlog-odds of the branch being
apical (capped at £200) and the y-axis is the relative apical quality based on a
soft-max operation (see Methods for details). Branches in the upper right
quadrant were classified as apical. The method was able to correctly classify at
leastone apical branch for all cells, and “false positives” were often associated
withborderline cases. f) Distribution of synapticinputs onto excitatory
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Excitatory (left) and inhibitory (right) targets shown separately. Vertical gray

lineindicates the value used for “clumpiness” in the main text.b) Same as a, but
for the cluster-based labels and with log scale to highlight shorter distances. c)
The “clumpiness” metric using different distance thresholds. The qualitative
relationships are extremely robust to distance thresholds.



a b
4
3 . . 2
2 oy 3 . gq 3
2 LR o
0 § 0 2 3
H 3
] o é
o : . 2
° . . 0 o 5
-4 . » o ®
W ote ® %S
-6 o, 3 St o
e . .
B .
-8
2 0 2 4 6 -4 -2 0 2
LD1 D2
Manual Cell Type
c Frac Soma Frac Apical Frac Multisynaptic
1.00 1.00 1 1.00
=
0.75 0.75 0754 ¥
f N (3
0.50 0.50 0.50
¢ t
0254 § ﬂ) 0.25 3 0.25 ¢
A & 3
000 -9~ @ ‘&= 0.00 er. 0.00 -
Frac Proximal Frac Distal Frac Inhibitory Frac Clumped
1.00 1.00 - 1.00 1.00 -
0751 © o 0.75 0.75 é 075 .
o -
0.50 . 0.50 0.50 050 1 *@ +
(J v
025 o + ’ 025 ® L 0.25 ° 0.25 4 e ‘
82 & » 3
“ ‘e @
0.00 000 AW 0.00 < 0.00 -
PTC  DTC  STC Imc PTC DTC  STC mc PTC  DIC  STC mc PTC  DTC  STC ITCc
e
m*““““ B Rt S o S 'S TS 3
/V 1“’ d ] %
& X
— a
500 um

%X%ﬁ%ﬁ%**%%
L 2 SR L e
S AT oo
L T g e

AR VP i G

f
BN PR IR AR A I R %wﬁg *
1 N ‘

e

£ te . Sy
Extended DataFig. 3 |Inhibitory neuron properties. a) Projections of all
analyzedinterneurons (n=163) projected on a 3-d space based onlinear
discriminant analysis (LDA) using connectivity features (shownin c). Fully
colored dotsindicate manually classified cells used as training data for LDA,
while dots with grey centers were labeled based on this classification.
b) Matrix showing relationship between anatomical subclasses and manual

FEVLLE LT 4Y
x%% «1@» v%r i E e
S ST

6

gfg@quwm

%L*ﬁ%%% " %&

classifications. ¢) Individual connectivity features, organized by subclass.
Colored dotsareindividual cells, black dots indicate median with error bars
showingabootstrapped 95% confidence interval. d-g) Morphology of all
PeriTCs (d), DistTCs (e), SparTCs (f), and InhTCs (g). Scale barsare 500 um. Dark
and thick lines are dendrite, thinner and lighter are axon. Cells are ordered by
somadepth.




Article

a
© 1syn
+ 5syn
® 10syn
® 15+ syn
o
=
=
()
a
100 oL
Net Syn Post
O
=
o
c
o
o
©° 50 ol
a Net Syn Post
«
c
>
[7)
-
173
o
o 4
od
o .
=
54
Q
2]
0 ol
Net Syn Post
A
.
) &
Qe 2%
=4 oo
=
.
.
.
25 o LI1

Net Syn Post

PeriTC

s 4 L5 s
Pre Soma Depth
.

s ':'355;"‘#:’..’. o

e

. .
;,:w:ra;z’&v'

s 4 5 L5
Pre Soma Depth

s e 5 s
Pre Soma Depth

s L 5 s
Pre Soma Depth

g
Net Syn Pre

B

-Len

Post Soma Depth

-6

8
Net Syn Pre

s o

Post Soma Depth

Y
“Net Syn Pre

Post Soma Depth

ge 8
Net Syn Pre

Post Soma Depth

PeriTC

DistTC

0 ol B L4 s s

Net Syn Post

Pre Soma Depth

L] 7 ..'
o ®ed0 N
0 V.
H
" e
®
.!
]
e
:;
°
0w ol e L s is

Net Syn Post

10 ol
Net Syn Post

50 o I.Il
Net Syn Post

25 o
let Syn Post

Pre Soma Depth

e e 5 s
Pre Soma Depth

(&) LI4 LIS L‘S
Pre Soma Depth

InhTCPe"

PrTer

€ e @0«

e 4 5 s wm
Pre Soma Depth

Extended DataFig. 4 |Inhibition ofinhibition. a) Connectivity dotplot
betweeninhibitory neurons, organized by inhibitory subclasses, organized by
somadepth. For each panel, the scatterplot reflects the connectivity from cells

inthe presynaptic subclass (x-axis) to cells in the postsynaptic subclass (y-axis).

Eachdotisasingle connection, with larger dots having more synapses. The

8
Net Syn Pre

Post Soma Depth

oy
Net Syn Pre

2 )
Net Syn Pre Post Soma Depth

o

Post Soma Depth

o @
Net Syn Pre

Post Soma Depth

100

)
Net Syn Pre

-L2n

&
Post Soma Depth

-WM

Presynaptic

5 oL s L 5 Ls
Net Syn Post Pre Soma Depth

oie o0 . L
L ]
H > ]
. -
. :ﬁ s
P
10 ol L L4 s is

Net Syn Post Pre Soma Depth

. s o . 8
%o
. °
.
0 0Ll LB L4 s s

Net Syn Post Pre Soma Depth

o L1® LX I

oL 123 L4

10 53 L6
Net Syn Post Pre Soma Depth
InhTCP*st

ome

25 olt s 4 5 U
let Syn Post Pre Soma Depth

ce 3
Net Syn Pre

Post Soma Depth

8
Net Syn Pre

)

Post Soma Depth

Net Sy°n Pre

o

Post Soma Depth

‘Net Syon Pre

o

Post Soma Depth

8
Net Syn Pre

)

&
Post Soma Depth

)
o8¢
L ;
o $ ¢
e $
%% :
L]
B 55
o8 te
.
25 oLt LA 4 s is
Net Syn Post Pre Soma Depth
ce,
.
s
H
.
[ e-. .
® (A
a2 .
T4 ]
¢
]
g g
0 ol s 4 5 s
Net Syn Post Pre Soma Depth
.
5 ol LB L U5 is
Net Syn Post Pre Soma Depth
. .
LR ] L4
.
10 o LII L2IB L‘4 I‘ﬁ I.‘S
Net Syn Post Pre Soma Depth

H
Net Syn Pre

o

- o )

§

ge 8
Net Syn Pre

location of each dot corresponds to the depth of the pre-and post-synaptic
cellbodies. Stem plots on top and side indicate the net synaptic inputs and

netsynaptic outputs of each cellin each subclass within the columnsample.
b) Same as a, but for InhTC™" and InhTC"** onto PeriTCs separately.

“Net Syn Pre

Net Syn Pre

Post Soma Depth Post Soma Depth Post Soma Depth

Post Soma Depth



o
1
0

&~ - 0
L :,\\%ﬁi L2a - ——
J - L2b o
L2c |
L3a - —
L3b | B
[ L4a | m—
L4b | b
L4c 4 Lh
L5a 4
100 ¢ g L5b 1k
@« &’ @ o L5ET i
g o ks o . r|‘_5NP L
(] 2 6short-a
0 s 0 Leshort-b 4|
low -1 - L Létal-a 1§
3 - . Létall-b {F
] . Leétall-c {F low
. S - 253 - L2753 Lewm o' high
£ < —
g a 0.0 0.2 0.4 0.6
-4 Q “L4 8 Fraction Syn.
£ £
. S o e =
q -5 g -5 % /\ @
high &
. SRR X
-6 -6 '\\( @
— . ' s ' ,_, . . . . L4 @ al @ — @
50 0 L1 Ll23 L4 L5 L6 50 0oL L3 L4 L5 L6 =
Net Syn Pre Soma Depth Net Syn Pre Soma Depth
Post Post
f g InhTCHst InhTCPer h
1.0 0.100 INhTCP# > PerTC
- Z 3 2 0.075 InhTCst - DistTC
5 T c —
g 3895 S 0.050 all PeriTC inputs
b E o™ PeriTC 20
z =) DistTC [}
Ouw SparTC - 0.025
- InhTC
i T T T T 0.000
3 4 3 4 T T T T T T ]
000 10 10 1o® 10 0 50 100 150 200 250 300
" N Synapse Size Synapse Size
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by somadepth. b) Connectivity dotplot for synapses from InhTC%* onto DistTCs.
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scatterplot for synapses from DistTCs onto InhTC®', as in b. Note that the
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Extended DataFig. 8| Additional characterization of motifgroups.

a-r) Morphology of all cells, organized by motif group. Within each group,
cellsare ordered by somadepth. Colorsindicate M-type, darker lines indicate
dendrites. s) The arbors of cells extend well beyond the columnar data. The
scatterplot depicts atop-down view of somalocations of all synaptic targets of
CellID260622.Black dots are cells within the column, red dots are cells outside
the columnsample; dotsizeis proportional to number of synapses. t) The
number of synapses fromeach interneuron onto target neurons within the
column (black) and anywhere the dataset (red). Interneurons were ordered by
within-columnsynapse count. The mean cell had 5.49 times more synapses
across the dataset than onto column targets alone (black dashed line). Only

targets passing basic quality control criteria were included. Note that while
cellsoutside the sampled column are not necessarily proofread, synapses onto
unproofread dendrites are nearly always correct (see Methods). u) Scatterplot
of output synapse budget values within-column and dataset-wide (seev). The
bluelineindicates equality. The Pearson correlation between within-column
measurements with the dataset-wide measurements was R = 0.9, notincluding
trivial zeros (see Methods). v) Output synapse budget for eachinterneuron
onto dataset-wide target M-types, using predictions from perisomatic features
from Elabbady et al.*°. Note that the Lowm M-type was notincluded in
predictions andis thustrivially zero for allinterneurons.
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Extended DataFig. 9| Additional connectivity statistics within motif
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connection. Single cell values are represented by dots, median values are
shownwith bars.
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Extended DataFig.10|Selectivity and nullmodels for inhibitory
connectivity. a) Number of synapses per M-type, compartment, and depth
bin. These values were used as the baseline against which tocompare synaptic
output distributions for eachinhibitory neuron. b) Expected value of each
presynapticinhibitory neuronaccordingto anincreasingly complexset of null
models. Each row represents the fraction of synaptic outputs fromagiven
inhibitory neuron (ordered as in Fig. 5a), distributed across excitatory M-types.
Fromthe left: 1) Synaptic outputs were proportional to the number of cellsin
each M-type, regardless of locationin space. This approach accounts for the
differing cell frequency for each M-type. 2) Synaptic outputs were proportional
tothe netnumber of input synapses for agiven M-type, regardless of location
inspace. This approachaccounts for the diversity in synaptic inputs for

each M-type. 3) Synaptic outputs were distributed across compartments for
eachinhibitory cell as observed and distributed across M-types for each
compartmentseparately. Thisapproach accounts for the observed differences
incompartment targeting for differentinterneurons. 4) Synaptic outputs

were distributed across M-types within each of 50 depth bins, matching the
observed depth distribution of synaptic outputs for each inhibitory neuron.
Thisapproachaccounts for the spatial distribution of synapses, but not
compartment targeting. 5) Synaptic outputs were distributed across M-types
withinboth depth binsand compartments, matching the observed distribution
ofboth. Thisapproach accounts for both the spatial distribution of synapses
and compartment targeting and is the most complete model considered here.

Atthefarright, the observed distribution on the samescale, repeating the
datainFig.5.c) Selectivity index (SI) for all cells, as described in the main text.
Purple values have the observed number of output synapses significantly
higher than a null model with matched compartmentand depth targeting,
while green are significantly less. Non-significant Sl values are treated as 1. d)
Difference between the observed distribution and the null model distribution
foreach cellas measured by the Kullback-Leibler divergence (from observed
distribution to null distribution), by inhibitory subclass. Each colored dotisa
cell, black dots are median with error bars indicatinga 95% confidence interval
based onabootstrap. e) Comparison between the most complete null model
acrossinhibitory subclasses. The PeriTCs have the lowest KL divergence of all
types, indicating that the nullmodel best predicts their connectivity. Note also
thattheindividual cells exhibit a range of specificity relative to nullmodels. f)
Similarity of M-type synapse distributions in space, using the Bhattacharyya
distance between the depth distribution of synaptic inputs onto somaand
proximal dendrites (left) and distal and apical dendrite (right). Values closer to
lindicate more similar distributions, values closer to O indicate more distinct
distributions. g) AllBhattacharyya distance comparisonsine, with colored
dotsindicating pairs of distinct M-types, black dots indicating the median, and
error bars showing abootstrapped 95% confidence interval. Across all pairs,
synapticinputs onto the perisomatic and somatic compartments are more
spatially segregated across different M-types than synaptic inputs onto distal
and apical dendrites (p =3.0 x 10™°, Mann-Whitney U test).
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Data analysis Data analysis was performed using custom code in python 3.9 with extensive use of numpy, matplotlib, pandas, scikit-learn, scipy, stats-
models, vtk, and seaborn. Analysis code is available at https://github.com/Alleninstitute/ConnectomicCensus2024 .

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

Image and segmentation data is available via https://www.microns-explorer.org. Skeletons and tabular data are available at https://doi.org/10.5281/
zen0do.7641780 .
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Population characteristics N/A
Recruitment N/A
Ethics oversight N/A

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size No explicit sample size calculation was performed. The spatial extent of sampling was chosen based on experience with cell type diversity and
density of cortical cell types.

Data exclusions | One neuron in white matter was excluded from analysis because the segmentation quality was too low for properties to be confidently
measured.

Replication No experimental replication was performed. Replication of stochastic clustering was performed through consensus of many iterations of
clustering with subsampled data, as described in methods.

Randomization  No randomization was performed

Blinding No blinding was performed

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods

n/a | Involved in the study n/a | Involved in the study
Antibodies |:| ChIP-seq
Eukaryotic cell lines |:| Flow cytometry
Palaeontology and archaeology |:| MRI-based neuroimaging
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Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in
Research

Laboratory animals Slc17a7-IRES2-Cre-D knock-in mice (Jackson Laboratory, Stock No. 023527) and Ail62 mice (Jackson Laboratory, Stock No. 031562)
Wild animals N/A
Reporting on sex Male mouse

Field-collected samples  N/A

Ethics oversight All procedures were approved by the Institutional Animal Care and Use Committee at Allen Institute of Brain Science or Baylor
College of Medicine.
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Note that full information on the approval of the study protocol must also be provided in the manuscript.
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