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Inhibitory specificity from a connectomic 
census of mouse visual cortex
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Mammalian cortex features a vast diversity of neuronal cell types, each with 
characteristic anatomical, molecular and functional properties1. Synaptic 
connectivity shapes how each cell type participates in the cortical circuit, but 
mapping connectivity rules at the resolution of distinct cell types remains difficult. 
Here we used millimetre-scale volumetric electron microscopy2 to investigate the 
connectivity of all inhibitory neurons across a densely segmented neuronal 
population of 1,352 cells spanning all layers of mouse visual cortex, producing a  
wiring diagram of inhibition with more than 70,000 synapses. Inspired by classical 
neuroanatomy, we classified inhibitory neurons based on targeting of dendritic 
compartments and developed an excitatory neuron classification based on dendritic 
reconstructions with whole-cell maps of synaptic input. Single-cell connectivity 
showed a class of disinhibitory specialist that targets basket cells. Analysis of 
inhibitory connectivity onto excitatory neurons found widespread specificity,  
with many interneurons exhibiting differential targeting of spatially intermingled 
subpopulations. Inhibitory targeting was organized into ‘motif groups’, diverse sets  
of cells that collectively target both perisomatic and dendritic compartments of  
the same excitatory targets. Collectively, our analysis identified new organizing 
principles for cortical inhibition and will serve as a foundation for linking 
contemporary multimodal neuronal atlases with the cortical wiring diagram.

In mammalian cortex, information processing involves a diverse 
population of neurons distributed across six layers in an arrangement 
described as a cortical column3. Cell types are a central concept for 
understanding how the columnar network is organized1. Originally 
classified on the basis of morphology4, cortical cell types have been 
increasingly characterized by transcriptomic, molecular, electrophysi-
ological and functional properties as well5–9. Excitatory neurons make 
up almost 90% of neocortical neurons10 and vary not only across cortical 
layers but also by long-range projection targets11. Inhibitory neurons, 
although much fewer in total number, have at least as much diversity 
as excitatory neurons in a single region6–8, offering the potential for 
highly selective control of cortical activity.

Determining how fine-scale cell type definitions are reflected in 
synaptic connectivity remains difficult. Most of our understanding 
of inhibitory connectivity is based not on individual cell types but 
on cardinal subclasses based on marker genes parvalbumin (PV), 

somatostatin (SST), vasoactive intestinal polypeptide (VIP) and Id2, 
each with shared developmental, functional and synaptic proper-
ties12–15. Within these cardinal subclasses, individual cell types can be 
highly diverse6,7,16 and functionally distinct17, but little is known about 
connectivity for most cell types. Although some studies have observed 
largely unspecific connectivity onto nearby cells18, others have found 
examples of selective targeting of subpopulations of excitatory cells 
based on the layer19 or long-range axonal projection of target cells20,21. 
It is not known whether such selectivity is common or rare relative to 
unspecific connectivity. Likewise, basic organizational properties 
remain unclear: for example, which excitatory neurons receive inhibi-
tion from the same interneurons.

To date, physiological22,23 or viral24 approaches to measuring con-
nectivity are still challenging to scale to the full diversity of potential 
cell type interactions. In smaller model organisms like Caenorhabdi-
tis elegans25 and Drosophila melanogaster26,27, dense reconstruction 
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using large-scale electron microscopy (EM) has been instrumental 
for discovering cell types and their connectivity. In mammalian cor-
tex, technical limitations on EM volume sizes have meant that similar 
studies could not examine complete neuronal arbours, making the link 
between cellular morphology and connectivity difficult to address28–30. 
However, recent advances in data generation and machine learning 
have helped to produce EM datasets at the scale of a cubic millimetre, 
making circuit-scale cortical EM volumes now possible2.

In this study, we used a millimetre-scale EM volume of mouse primary 
visual cortex (VISp)2 to reconstruct the anatomy and synaptic connec-
tivity for a continuous population of 1,352 neurons in a column spanning 
from layer 1 to white matter. The scale of this data, combined with the 
resolution provided by EM, led us to ask how morphological cell types 
relate to the synaptic connectivity of inhibitory neurons. Inspired by 
classical neuroanatomical methods, we classified inhibitory neurons 
into connectivity-based subclasses largely aligned with molecular sub-
classes and developed a new classification of excitatory neurons using 
morphological and synaptic properties, capturing features that were 
not clear from morphology alone. By analysing the synaptic output 
of inhibitory neurons at both the single-cell and subclass levels, we 
found that inhibitory neurons exhibited widespread target specificity 
and identified groups of interneurons with similar subclass-specific 
targeting but with different compartmental targeting. Our data not 
only identified a new class of disinhibitory specialist but also indicate an 

organizing principle for inhibitory connectivity that is complementary 
to, but distinct from, cell types: diverse groups of inhibitory neurons 
that are positioned to collectively control activity of the same target 
populations with remarkable precision.

A millimetre-scale cortical EM reconstruction
To measure synaptic connectivity and neuronal anatomy for a large neu-
ronal population, we used a serial section transmission EM volume of 
mouse visual cortex acquired as part of the broader MICrONS project2. 
Specifically, we analysed a volume of mouse visual cortex spanning 
523 × 1,100 × 820 µm (anteroposterior × mediolateral × depth), cover-
ing pia to white matter and including parts of VISp and higher-order 
visual areas (Fig. 1a–c). Importantly, these dimensions were sufficient to 
capture the entire dendritic arbour of typical cortical neurons (Fig. 1a) 
at a resolution capable of resolving ultrastructural features such as 
synaptic vesicles (Fig. 1b). Convolutional networks generated an initial 
autosegmentation of all cells, segmented nuclei, detected synapses 
and assigned synaptic partners2. Owing to reduced alignment quality 
near the edge of tissue, segmentation began about 10 µm from the pial 
surface and continued into white matter.

To generate an unbiased sample of cells across all layers, we selected 
all cells whose soma fell within a 100 × 100-µm-wide column from pia to 
white matter and centred on the VISp portion of the volume (Fig. 1c–e). 
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Fig. 1 | A columnar reconstruction of mouse visual cortex. a, The millimetre- 
scale EM volume is large enough to capture complete dendrites of cells across 
all layers. Neurons shown are a random subset of the volume, with a single 
example at right for clarity. b, The autosegmented EM data show ultrastructural 
features such as membranes, synapses and mitochondria. Scale bar, 500 nm.  
c, Top view of EM data with approximate regional boundaries indicated. The 
yellow box indicates the 100 µm × 100 µm column of interest. Scale bar, 200 µm. 
d, All soma locations in the column coloured by cell class. Scale bar, 100 µm.  
e, Example neurons from along the column. Note that anatomical continuity 
required adding a bend in deeper layers. f, Proofreading workflow by cell  
class. g, Cell density for column cells along cortical depth by cell class.  

Scale bar, 200 µm. h, Input synapse count per micrometre of depth across all 
excitatory (purple) and inhibitory (green) column cells along cortical depth by 
target neuronal cell class. Scale bar, 200 µm. i, All excitatory dendrites, with 
arbours of cells with deeper somata coloured darker. Same orientation as in d. 
Scale bar, 200 µm. j, Number of input synapses for each excitatory neuron as a 
function of soma depth. k, All inhibitory dendrites, as in j. l, Number of input 
synapses for inhibitory neurons, as in k. m, Axons of inhibitory neurons, as in j. 
n, Number of output synapses for inhibitory neurons, as in k. VISrl, rostrolateral 
visual area; VISal, anterolateral visual area; Exc, excitatory; inh, inhibitory; non, 
non-neuronal; syn, synapses; WM, white matter.
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This location was chosen to be far from dataset edges to avoid trun-
cated arbours as much as possible. To follow a continuous population 
of neurons, the column bends in lower layer 5, defined such that the 
apical dendrites of deep layer cells would be intermingled with the cell 
bodies of superficial cells (Fig. 1d,e and Methods). This trajectory was 
also followed by primary axons of superficial cells and the translaminar 
axons of inhibitory neurons, indicating that this bend is shared across 
cell types.

Dense neuron population across all layers
We classified all 1,886 cells in the column as excitatory neurons, inhibi-
tory neurons or non-neuronal cells on the basis of morphology (Fig. 1d). 
For neurons, we performed extensive manual proofreading—more than 
46,000 edits in all (Fig. 1f), guided by computational tools to focus 
attention on potential error locations (Methods). We selected a proof-
reading strategy to efficiently measure the connectivity of inhibitory 
neurons across all possible target cell types. Proofreading of excitatory 
neurons aimed to reconstruct complete dendritic arbours, combining 
both manual edits and computational filtering of false axonal merges 
onto dendrites (Methods), and for inhibitory neurons we reconstructed 
both complete dendritic arbours and extensive (but incomplete) axonal 
arbours.

Consistent with previous reports10, excitatory cell densities varied 
between layers, while inhibitory neurons and non-neuronal cells were 
more uniform (Fig. 1g). Dendritic reconstructions included the loca-
tions of a total of 4,490,649 synaptic inputs across all cells. Synaptic 
inputs onto excitatory cell dendrites were more numerous in layers 1–4 
compared to layers 5–6 (Spearman correlation of synapse count with 
depth: r = −0.92, P = 1.3 × 10−11), whereas inputs onto inhibitory cells 
were relatively uniform across depths (Fig. 1h; Spearman correlation 
of synapse count with depth: r =−0.06, P = 0.76).

Reconstructions captured rich anatomical information for individual 
cells across all layers. Excitatory cell dendrites (Fig. 1i) typically had 
thousands of synaptic inputs, with laminar differences in total synaptic 
input per cell (analysis of variance for layer effect: F = 82.9, P = 1.6 × 10−48, 
Fig. 1j). Typical inhibitory neurons had 103–104 synaptic inputs (Fig. 1k,l) 
and 102–104 outputs (Fig. 1m,n) but did not show strong laminar pat-
terns (analysis of variance for layer effect: F = 0.72, P = 0.53). Collec-
tively, inhibitory axon reconstructions had 427,294 synaptic outputs. 
Attempts were made to follow every main inhibitory axon branch, but 
for large inhibitory arbours not every tip was reconstructed to comple-
tion; axonal properties should be treated as a lower bound. Comparing 
to a subset of neurons where reconstruction aimed for completeness31, 
we estimate that typical axonal reconstructions captured 50–75% of 
their total synaptic output compared to exhaustive proofreading.

Connectivity-based inhibitory subclasses
Molecular expression is a powerful organizing principle for inhibitory 
neurons, with four cardinal subclasses having distinct connectivity 
rules, synaptic dynamics and developmental origins14. However, EM 
data have no direct molecular information, nor do simple rules map 
morphology to molecular identity. Classical neuroanatomical studies 
often used the postsynaptic compartments targeted by an inhibitory 
neuron as a key feature of its subclass12,32: for example, distinguishing 
soma-targeting basket cells from dendrite-targeting Martinotti cells.

Inspired by this approach, we used the targeting properties of inhibi-
tory neurons to assign cells to anatomical subclasses (Fig. 2a). For all 
excitatory neurons, we divided the dendritic arbour into four compart-
ments: soma, proximal dendrite (less than 50 µm from the soma), apical 
dendrite and distal basal dendrite (Fig. 2b; see Extended Data Fig. 1 
and Methods for apical classification). Inhibitory cells were treated as 
a fifth target compartment. For each inhibitory neuron, we measured 
the distribution of synaptic outputs across compartments (Fig. 2c). We 

also included two measures of how a cell distributes its synapses onto 
individual targets: (1) the fraction of all synapses that were part of a 
multisynaptic connection and (2) the fraction of synapses in a multisyn-
aptic connection that were close together along the axon (‘clumped’; 
Fig. 2d). We used a distance threshold of 15 µm, about a quarter of the 
circumference of a typical cell body, and measurements were robust to 
the exact value (Extended Data Fig. 2). We use the term ‘connection’ to 
indicate a pre- and postsynaptic pair of cells connected by one or more 
distinct synapses and ‘multisynaptic connection’ for a connection with 
at least two synapses. We trained a linear classifier on the basis of expert 
annotations of the four cardinal subclasses for a subset of inhibitory 
neurons and applied it to all cells (Fig. 2d and Extended Data Fig. 3).

We named each subclass on the basis of its dominant anatomical 
property: perisomatic targeting cells (PeriTC) that primarily target 
soma or proximal dendrites, distal dendrite targeting cells (DistTC) 
that primarily target distal basal or apical dendrites, sparsely targeting 
cells (SparTC) that make few multisynaptic connections and inhibitory 
targeting cells (InhTC) that primarily target other inhibitory neurons 
(Fig. 2e). Typical examples of each subclass correspond roughly to 
classical or molecular subclasses (Fig. 2e), but there is not a one-to-one 
match12,14. PeriTCs would include soma-targeting cells from multiple 
molecular subclasses (for example, both PV and CCK+ basket cells)33. 
DistTCs would include SST+ Martinotti and non-Martinotti cells but 
also any neuron that strongly targets apical dendrites. InhTCs align well 
with disinhibitory specialist VIP neurons. The SparTC subclass included 
both neurogliaform cells and all layer 1 interneurons, indicating that it 
largely contained cells from the Id2 class15. Note that some cell types, 
such as chandelier cells, had no examples in the column, and some 
column cells did not fall into clear classical categories.

Inhibition of inhibitory neurons
Numerous studies have identified a standard architecture for the inhi-
bition of inhibition at the subclass level34: PV neurons inhibit other 
PV neurons, SST neurons inhibit all other subclasses (but not them-
selves), and VIP neurons inhibit SST neurons (Fig. 2h). Variations on 
this broad pattern have been found; for example, VIP+ neurons have 
been shown to target both SST and PV cells35, but little is known about 
the relationship between these connections and individual cells. The 
EM data contained 9,235 synapses between pairs of inhibitory neurons 
across 3,569 distinct connections (Fig. 2g and Extended Data Fig. 4), 
allowing us to examine whether single-cell resolution offered new 
insights into circuit organization.

To validate reconstructions and labels, we first measured inhibitory 
connectivity at the level of cardinal subclasses. As a proxy for presyn-
aptic influence of a subclass, we computed the average number of 
synapses between all neurons from each presynaptic subclass onto 
each inhibitory neuron and averaged them within postsynaptic sub-
class. The five expected subclass-level connections aligned with the 
five strongest connections measured from EM (Fig. 2i), on the basis 
of the approximate correspondence (Fig. 2e). Both cardinal subclass 
identification and neuronal reconstructions were thus consistent with 
established connectivity.

At the level of individual cells, however, the data showed new con-
nectivity patterns. We focused on InhTCs, ‘disinhibitory specialists’ 
that almost exclusively target other inhibitory neurons rather than 
excitatory cells (mean: 82% of synaptic outputs). For each InhTC, we 
computed its distribution of synaptic outputs across inhibitory sub-
classes (Fig. 2j,k). VIP-positive disinhibitory specialists in visual cortex 
have been shown to preferentially target SST cells23,34, and thus we 
expected InhTCs would largely target DistTCs.

As expected, synaptic output was principally onto DistTCs for 21 of 
29 InhTCs (mean of 74% of those synapses onto inhibitory neurons), 
a group we denoted InhTCDist (Fig. 2k). Single-neuron consideration 
of InhTCDist connectivity showed striking laminar organization, with 
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InhTCDist in layers 2–4 targeting those DistTCs in layers 4 and 5 but not 
those in layer 2/3 (Extended Data Fig. 5). Those DistTCs in layer 2/3 made 
few synapses onto InhTCDist in return. Interestingly, layer 2/3 DistTCs 
typically targeted excitatory neurons in upper (‘layer 2’) but not lower 
(‘layer 3’) layer 2/3, indicating that InhTC-mediated disinhibition differs 
across layer 2/3 pyramidal cells.

Unexpectedly, we also found a second population of disinhibitory 
specialists. This smaller group of InhTCs (8 of 29) specifically targeted 
PeriTCs (mean of 82% of those synapses onto inhibitory neurons), 

and hence we called them InhTCPeri (Fig. 2k). Although InhTCDist had 
bipolar or multipolar dendrites and were concentrated in layers 2–4 
(Extended Data Fig. 5), consistent with typical VIP neurons (Fig. 2m), 
InhTCsPeri all had multipolar dendrites and were distributed across 
layers (Fig. 2n). The eight InhTCPeri in the column targeted 56 of 58 
PeriTCs with a mean of 10.5 net synapses per target cell, indicating 
that this connectivity probably includes basket cells from PV and other 
molecular subclasses (Extended Data Fig. 4). We next asked if InhTCPeri 
receive reciprocal inhibition from PeriTCs in analogy to the reciprocal 
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the presynaptic axon (right). d, Targeting features for all inhibitory neurons, 
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synapses in multisynaptic connections). e, Relationship between anatomical 
connectivity categories (top), typical associated classical cell categories 
(middle) and anatomical examples (bottom) of the inhibitory subclasses. 
Dendrite is darker, axon lighter. f, Adjacency matrix for inhibitory neurons.  
Each dot represents a connection from a presynaptic to a postsynaptic cell,  
with dot size proportional to synapse count. Dots are coloured by presynaptic 
subclass and ordered by subclass, connectivity group (Fig. 5) and soma depth. 

g, Standard model of inhibition of inhibition between molecular subclasses.  
h, Mean number of synaptic inputs a postsynaptic cell received from all cells  
of a given presynaptic subclass. i, Potential InhTC targets. j, Synaptic output 
fraction each InhTC (columns) places onto target subclasses (rows). InhTCs are 
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targeting PeriTCs (InhTCperi). k, Connectivity diagram for InhTCperi suggested  
by data. l, Morphology of example InhTCdist. m, Morphology of all InhTCperi.  
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from InhTCdist (left) and InhTCperi (right) onto inhibitory subclasses. Error  
bars indicate 95% confidence interval. T-test P-values indicated: *, P < 0.05;  
***, P < 0.005 after Holm–Sidak correction. o, Distribution of synapses per 
connection for InhTCperi and InhTCdist onto their preferred and non-preferred 
targets. Scale bars, 500 µm. CCK, cholecystokinin; frac, fraction; multisyn, 
multisynaptic; no, number of.
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inhibition between VIP and SST cells23,34. However, we found few recipro-
cal synapses from PeriTCs back onto InhTCPeris but numerous inhibitory 
inputs from DistTCs (Extended Data Fig. 5), suggesting a new pathway 
on the standard inhibitory diagram (Fig. 2k).

The targeting preference of InhTCs was seen across several aspects 
of their connectivity. We first looked at a measure of synapse size on the 
basis of the automatic synapse detection (Methods). InhTCDist → DistTC 
synapses had a median size 44% larger than those onto other inhibitory 
subclasses (Fig. 2o). Similarly, the median InhTCPeri → PeriTC synapse 
was 69% larger than synapses onto other inhibitory subclasses (Fig. 2o). 
In addition, the mean number of synapses per unique connection was 
significantly higher between InhTCDist → DistTC compared to other 
targets (Fig. 2p) (3.6 versus 1.6 synapses per connection; P = 1.5 × 10−10, 
Student’s t-test) and between InhTCPeri → PeriTC compared to other 
targets (3.1 versus 1.5 synapses per connection; P = 1.1 × 10−5, Student’s 
t-test). The location of synapses onto preferred targets was similar 
for the two InhTC subgroups, with a median distance from soma of 
83.5 µm (InhTCDist) and 86.2 µm (InhTCPeri) and no significant differ-
ence in distribution (Kolmogorov–Smirnov test, P = 0.25) (Extended 
Data Fig. 5). Taken together, both InhTCDist and InhTCPeri express their 
distinct targeting through increased synapse count, larger synapses 
and more synapses per connection.

Dendritic excitatory subclasses with synaptic resolution
Although inhibitory neurons have frequently been described as having 
dense, non-specific connectivity onto nearby neurons36, many studies 
have shown examples not only of layer-specific connectivity37 but also 
of selectivity in spatially intermingled excitatory subpopulations20,21,38. 
It is unclear the degree to which inhibition is specific, and in general, 
the principles underlying which excitatory neurons are inhibited by 
which inhibitory neurons are not well understood.

To address these questions, we first anatomically characterized 
excitatory neurons subclasses in the EM data. Previous approaches to 
data-driven clustering of excitatory neuron morphology used dendritic 
shape8,9, but the EM data also has the location and size of all synaptic 
inputs (Fig. 3a). We reasoned that such synaptic features would help 
characterize the landscape of excitatory neurons, because synapses 
directly reflect how neurons interact with one another. We assembled a 
suite of 29 features to describe each cell, including synapse properties 
such median synapse size, skeleton qualities such as total branch length 
and spatial properties characterizing the distribution of synapses with 
depth (Fig. 3b and Methods). The synapse-detection algorithm did not 
distinguish between excitatory and inhibitory synapses, and thus all 
synapse-based measures include both types of synapses. We performed 
an unsupervised consensus clustering of these features (Fig. 3b–d), 
identifying 18 ‘morphological types’ (M-types; Methods).

To relate this landscape to known cell types, we compared M-type 
classifications to expert labels of layer and long-range projection 
type (intratelencephalic/intracortical (IT); extratelencephalic/
subcortical-projecting (ET), near-projecting (NP), corticothalamic 
(CT))39. Each layer contained several M-types, some spatially inter-
mingled and others separating into subdomains in the layer (Fig. 3e). 
M-types were named by the dominant expert label (Extended Data 
Fig. 6), with M-types in the same layer being ordered by projection 
subclass and average soma depth. For clarity, we use the letter ‘L’ in 
the name of M-types (which may include some cells outside the given 
layer) and the word ‘layer’ to refer to a spatial region. Upper and lower 
layer 2/3 emerged as having distinct clusters, which we denoted ‘L2’ 
and ‘L3’, respectively. Layer 6 had the most distinct M-types, broadly 
split into two categories: those with short or inverted apical dendrites 
(L6short), consistent with IT subclasses; and those with tall apical and 
narrow basal dendrites (L6tall), consistent with CT subclasses8. It was 
not possible to unambiguously label some layer 6 neurons as either IT 
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or CT on the basis of anatomy alone, but 99% (n = 142 of 143) of manually 
assigned CT cells fell into one of the L6tall M-types.

Most M-types had visually distinguishable characteristics (Fig. 3d and 
Extended Data Fig. 2), but in some cases subtle differences in skeleton 
features were differentiated by stark differences in synaptic properties. 
For example, the two layer 2 M-types are visually similar, although L2a 
had a 29% higher overall dendritic length (L2a, 4,532 µm; L2b, 3,510 µm). 
However, L2a cells had 80% more synaptic inputs than L2b cells (L2a, 
4,758; L2b, 2,649), a 40% higher median synapse density (L2a, 1.04 syn-
apses per micrometre; L2b, 0.72 synapses per micrometre) (Fig. 3f,g) 
and a wider distribution of synapse sizes (Extended Data Fig. 1). Median 
synapse size turned out to differ across M-types, often matching layer 
transitions (Fig. 3g and Extended Data Fig. 1). Strikingly, L5 NP cells 
were outliers across synaptic properties, with the fewest total dendritic 
inputs, lowest synaptic input density and among the smallest synapses 
(Fig. 3g,h). Excitatory M-types thus differed not only in morphology 
but also in cell-level synaptic properties like total synaptic input and 
local properties like synapse size.

Inhibitory coordination across M-types
Subtype definitions based on structural properties may or may not 
be meaningful to cortical circuitry. If different M-types received input 
from different inhibitory populations, it would indicate potential for 
other circuit differences as well. Having classified inhibitory subclasses 
and excitatory M-types, we thus analysed how inhibition is distributed 
across the landscape of excitatory neurons.

The column reconstructions included 70,884 synapses from inhibi-
tory neurons onto excitatory neurons (Fig. 4a). PeriTCs and DistTCs 
were by far the dominant source of inhibition, with individual cells 
having as many as 2,118 synapses onto excitatory cells in the column 
(mean PeriTC, 581 synapses per presynaptic cell; mean DistTC, 596 
synapses per presynaptic cell), whereas SparTCs and InhTCs made far 
fewer synapses per presynaptic cell (mean SparTC, 74 synapses; mean 
InhTC, 16 synapses; Fig. 4b). Inhibition was distributed unequally across 
M-types (Fig. 4c). Much of this difference was related to differences 
in overall synaptic input. Across M-types, synaptic input at the soma, 
which is almost completely inhibitory, was strongly correlated (r = 0.96, 
P = 5 × 10−10) with net synaptic input onto dendrites, which is primarily 
excitatory (Extended Data Fig. 7). Notably, this structural balance of 
dendritic and somatic input also remained significant across individual 
cells in 16 of 18 M-types.

Similarly, synaptic input from PeriTC and DistTC was also typically 
balanced onto individual cells for each M-type. We examined the num-
ber of PeriTC and DistTC inputs onto individual excitatory neurons 
for each M-type and found significant positive correlation for 12 of 
18 M-types (Fig. 4d), indicating coordinated amounts of inhibitory 
synaptic inputs across the entire arbour of target cells. M-types in 
upper layers had particularly heterogeneous amounts of inhibitory 
input, with L2b cells receiving 60% fewer synapses from intracolumnar 
interneurons as spatially intermingled L2a cells (L2b, 37.7 ± 0.27 syn-
apses; L2a, 94.8 ± 0.58 synapses), whereas L3b cells had nearly as many 
intracolumnar inhibitory inputs as much larger L5 ET cells. All layer 6 
M-types had relatively few intracolumnar inhibitory inputs compared 
to upper layers (Fig. 4c). However, note that the columnar sampling 
only reflects local sources of inhibition and does not capture the net 
effect of potentially wider or narrower spatial domains of inhibitory 
integration between layers.

Individual inhibitory neurons often targeted several M-types, indi-
cating that certain combinations could be inhibited together. For each 
inhibitory neuron, we computed the connection density onto each 
M-type: that is, the fraction of cells in the column that received synaptic 
input from it (Fig. 4e). To measure the structure of co-inhibition, we 
computed the correlation of inhibitory connection density between 
M-types across PeriTCs and DistTCs separately (Fig.  4f). A high 

correlation would indicate that the same inhibitory neurons that 
connected more (or less) to one M-type also connect more (or less) to 
another, whereas zero correlation would indicate independent sources 
of inhibition between M-types.

These correlations showed several notable features of the structure 
of inhibition across layers. In superficial cortex, the layer 2 and layer 
3 M-types were strongly correlated in the layer but had modest corre-
lations between layers, indicating largely different sources of inhibi-
tion. Layer 4 M-types, in contrast, were all highly correlated with one 
another. Layer 5 M-types were more complex and suggested largely 
non-overlapping sources of inhibition, particularly among neurons with 
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different long-range projection targets. Layer 6 inhibition was virtually 
independent from other layers, with DistTC connectivity also distinct 
between IT-like L6short cells and CT-like L6tall cells. Collectively, both 
layer and projection subclass were key factors in shaping co-inhibition. 
Importantly, most cotargeting relationships were consistent for both 
PeriTC and DistTC output, indicating that cardinal inhibitory subclasses 
distribute their output across excitatory neurons with similar patterns 
of connectivity.

Cellular contributions of inhibition
How do individual neurons distribute their output to produce the pat-
terns of inhibition described above? To compare patterns of output, for 
every inhibitory neuron, we measured the fraction of synaptic outputs 
made onto each M-type (Fig. 5a). This normalized synaptic output 
budget reflected factors such as the number of synapses per connec-
tion and the number of potential targets but was not strongly affected 

by partial arbours. We performed a consensus clustering (Methods), 
identifying 18 ‘motif groups’, sets of cells with similar patterns of output 
connectivity (Fig. 5a and Extended Data Fig. 8). Although this measure-
ment only included synapses with cells in the column, interneurons 
made more than four times more synapses onto cells outside the col-
umn than within (Extended Data Fig. 8s,t). To check whether these 
results would hold with data outside the column, we used a prediction 
of neuronal M-types on the basis of perisomatic features and trained on 
column M-type labels40. We found that within-column and predicted 
dataset-wide synaptic output budgets were highly correlated (Pearson 
r = 0.90), confirming that the columnar sampling provided a good 
estimate of overall neuronal connectivity (Extended Data Fig. 8u,v).

Each motif group represented a collection of cells that targeted 
the same pattern of excitatory cell types. Although some motif 
groups focused their output onto single excitatory M-types (such as 
group 9) or layers (such as group 7), others spanned broadly (such 
as group 6). However, motif groups were not simply individual cell 
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types. Motif groups (Fig. 5b,c) showed diversity in both individual cell 
morphology and connectivity subclasses (Extended Data Figs. 3 and 8). 
Indeed, 15 of 18 groups (comprising 156 of 163 cells) included neurons 
from at least two subclasses, often aligned in cortical depth (Fig. 5d).

To summarize the relationship between motif groups and M-types, 
we computed both the average output fraction from each motif 
group onto each M- type (Fig. 5e) and the average input fraction of 
within-column inhibitory synaptic inputs onto a given M-type from 
each motif group (Fig. 5f). Input fraction often followed output frac-
tion for particularly strong connections, but not always. For example, 
although group 3 more strongly targeted M-types in layer 3 than layer 
2, it still contributed a substantial fraction of all inhibitory layer 2 input. 
In addition, we found that dominant connections for motif groups had 
both high connectivity density and several synapses per connection 
(Extended Data Fig. 9), properties that indicate a strong functional 
role in the circuit.

Inhibitory circuits were organized differently in upper layers com-
pared to layers 5 and 6. In layers 2–4, each excitatory M-type received 
strong inhibition from 2–3 motif groups with overlapping combinations 
of targets, some specific in layers and others that cross layer boundaries 
(Fig. 5g). In contrast, most motif groups targeted only single M-types in 
layer 5, although in some cases they also targeted cells in other layers 
(Fig. 5h). Connectivity patterns in layer 6 included clear examples of 
IT-specific and putatively CT-specific cells, similar to layer 5 projec-
tion subclasses, but also had cells, particularly PeriTCs, that targeted 
widely in layer 6.

Synaptic selectivity
Cell type specificity, how concentrated the output onto targets, is typi-
cal among interneurons described here. However, specificity can arise 
in many ways. Different neurons have varying dendritic and axonal 
morphologies, synaptic densities and compartment preferences that 
constrain potential interactions41,42. In addition, they can exhibit cell 
type selectivity, which we define as forming synapses with particular 
cell types more or less than might be expected on the basis of other 
factors such as axon/dendrite overlap.

To differentiate the effects of different contributing factors, for each 
interneuron we assembled information on morphology (Fig. 6a), synap-
tic connectivity and how its output is distributed across compartments 
(Fig. 6b) or excitatory M-types (Fig. 6c) in the column. We developed 
a selectivity index by comparing observed synaptic connectivity to a 
null model ignoring M-type but capturing compartment preference 
and postsynaptic factors such as number of synapses a cell typically 
receives and the spatial heterogeneity of potential targets42 (Fig. 6d). 
Because many of these factors are correlated with target cell properties, 
such a null model aimed to address confounding between the M-type 
label itself and those structural properties that affect connectivity 
more generally: for example, whether cells with higher input synapse 
density receive more inhibitory inputs irrespective of their M-type.

We computed a global baseline distribution of all synaptic inputs onto 
all column neuron dendrites, binned by cortical depth (20-µm-deep 
bins), M-type and target compartment (Fig. 6e and Extended Data 
Fig. 10). For each interneuron, we computed a shuffled output distri-
bution across M-types by repeatedly sampling connectivity from the 
baseline distribution, matching the synapse depth and compartment 
targeting distributions for that cell’s outputs. For each connection 
from an interneuron onto a potential target M-type, we defined the 
selectivity index as the ratio of observed connectivity to the median of 
the distribution of shuffled connectivity (n = 10,000 repeats; Fig. 6f), 
reflecting the amount of cell-type-dependent selectivity beyond the 
factors included in the null model. Although this sampling included 
both excitatory and inhibitory synapses, previous studies43,44 and our 
data indicate that excitatory and inhibitory inputs are proportional to 
one another, even at the level of individual cells (Extended Data Fig. 7).

Because motif groups had common specificity by definition, we 
asked if cells in motif groups had common patterns of selectivity as 
well (Fig. 6g). We computed the median selectivity index for each 
M-type/motif group pair, setting non-significant selectivity index 
values to 1 (Fig. 6h). We found that although 17 of 18 motif groups 
showed consistent positive or negative selectivity for some targets, 
in many cases highly specific connectivity was not associated with 
increased selectivity. For example, group 1 is highly specific to layer 
2 targets but surprisingly did not show consistent positive selectivity 
for them (Extended Data Fig. 10). Examination of each constraint of 
the null model—synapse abundance of different targets, presynaptic 
compartment specificity and presynaptic depth distribution—sug-
gested that this was because of group 1 axons having a narrow spatial 
distribution of axons that strongly overlapped layer 2 targets, which 
for many cells was sufficient to explain their connectivity (Extended 
Data Fig. 10). This effect was more pronounced for PeriTCs, which 
tended to target a more compact spatial domain with less overlap 
between M-types. In contrast, for DistTCs, the increased spatial over-
lap of distal and apical dendrites of different M-types required more 
selectivity to explain their connectivity (Extended Data Fig. 10). Col-
lectively, this suggests that to achieve specific targeting patterns, 
interneurons both project their axons to precise spatial domains 
and selectively favour or disfavour making synapses with specific 
targets, with the relative contribution of these factors differing across  
cell types.

Discussion
Here we generated a detailed map of neuronal structure and inhibitory 
connectivity in a column of visual cortex using EM. Using synaptic 
properties in addition to traditional morphological features, we found 
a collection of excitatory M-types with distinct patterns of inhibitory 
input, demonstrating that anatomical distinctions are reflected in 
the local inhibitory circuit. We use the term ‘motif groups’ to describe 
this organization of inhibitory neurons—a diverse collection of cells, 
extending beyond the concept of cell types, that target specific com-
binations of M-types’ perisomatic and dendritic compartments. The 
distribution of inhibitory motif groups also offers insights into the 
functional relationships of excitatory cell types. In layers 5 and 6, each 
projection subclass (IT, ET, NP and CT) had a collection of inhibitory 
cells for which they were the predominant target. This affords the net-
work the potential to individually control each projection subclass via 
selective inhibition both at the soma and across dendrites, potentially 
with different inhibitory types active under different network condi-
tions and behavioural states.

Cell connectivity cards
Although motif groups described the broad organization of groups 
of cells, individual interneurons showed fascinating but idiosyncratic 
structural properties. To concisely convey individual cell properties, 
we summarized morphology and connectivity into ‘connectivity cards’ 
(Fig. 6i–l). Individual cards can show unique features that were not 
clear from groups alone, such as extreme specificity (Fig. 6i) or dif-
ferent patterns of translaminar connectivity (Fig. 6j–l). An atlas for all 
interneurons can be found in Supplementary File 1.

Sublaminar inhibitory specificity
This question of inhibitory specificity has been perhaps best stud-
ied in layer 5, with its highly distinct ET and IT excitatory projection 
suclasses45. For dendrite-targeting cells, precise genetic targeting of 
layer 5 SST subtypes identified distinct cell types that targeted ET ver-
sus IT cells21. In addition, developmental perturbation altering ET or 
IT neurons has suggested that they have different perisomatic input 
as well, with PV cells preferentially targeting ET and cholecystokinin 
neurons targeting IT46–48. Here, ET cells received input from a larger 
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number and diversity of inhibitory cells than layer 5 IT, despite being 
less numerous, indicating that as the primary subcortical output cell, 
ET neurons have a larger and more diverse inhibitory network than IT 
cells. ET cells were also frequently involved in translaminar circuits, 
with several examples of both ascending and descending translaminar 
PeriTCs and ascending DistTCs that targeted both L2/3 neurons and 
ETs but not ITs, indicating bidirectional pathways for coordinated 
inhibition. In addition, layer 5 IT and NP cells had distinct collections 
of inhibitory neurons. Projection-specific inhibition was also found 
in layer 6 between putative IT and CT neurons. In contrast to layer 5, 
however, there was a combination of both projection-specific and 
broad layer 6 inhibition. These connectivity patterns afford the cor-
tical network the potential to selectively inhibit distinct projection 

subclasses, potentially with different cell types active under different 
network states or using different plasticity rules.

Even in layers 2–4, with only IT cells, there was significant sublaminar 
specificity. The differential inhibition of layer 2 versus layer 3 cells 
suggests that are functionally distinct subnetworks with independ-
ent modulation. This could mirror depth-dependent differences in 
intracortical projection patterns49, similar to prefrontal cortex, where 
amygdala-projecting layer 2 cells receive inhibition that selectively 
avoids neighbouring cortical-projecting cells20,38. Another possibil-
ity is that they are well posed to differentially modulate top-down 
versus sensory-driven activity50,51, as layer 3 receives more sensory 
thalamic input than layer 2 (ref. 11). More generally, the distinct inhibi-
tory environments of upper and lower layer 2/3 have been observed 
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Fig. 6 | Synaptic selectivity and cell connectivity cards. a, Example 
inhibitory neuron (cell ID 303085). Axon in blue, dendrite in red. Scale bar, 
200 µm. b, Distribution of synaptic outputs across target compartments for 
the cell in a. c, Distribution of synaptic outputs across M-types (bar length) and 
compartments (bar colours) for the cell in a. d, Selectivity index values for the 
cell in a, measured as the ratio of observed synapse count to median shuffled 
synapse count for a null model as described below. Error bars indicate 95th 
percentile interval. Coloured dots (blue, low; orange, high) indicate significant 
differences (two-sided shuffle, P < 0.05) relative to the shuffle distribution 
after Holm–Sidak multiple test correction. e, As a baseline synapse distribution 
for null models, all synaptic inputs onto all cells in the column were binned by 
compartment, depth and M-type. (See Extended Data Fig. 10 for more details.) 
f, Shuffled connectivity for the cell in a was computed by sampling from the 
baseline synapse distribution with the observed depth and compartment bins 

and counting synapses onto each M-type across all bins (n = 1,000 shuffles). 
Example shuffle values for L3a (top) and L4a (bottom) M-types versus  
observed synapses are shown. g, Selectivity index for all cells in motif group 5. 
Non-significant values are assigned a value of 1. The cell in a is highlighted  
by a black box. h, Direction of the median cell’s selectivity index from each 
motif group onto each M-type. Orange indicates more connected, blue less 
connected. Connections where the median selectivity index was non- 
significant are indicated with a dot. i–l, Compact cell connectivity cards 
encapsulating anatomy (left), M-type target distribution (middle, bar length), 
compartment targeting (middle, bar colours as in d) and selectivity index 
(right, as in g) for four example neurons: an L5ET-specific basket cell (i), a deep- 
layer-specific upper layer neuron ( j), a translaminar basket cell (k) and a 
translaminar layer 6 interneuron (l). Full connectivity cards for all cells can be 
found in Supplementary File 1. Scale bars, 200 µm. SI, selectivity index.
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across cortex, from primary sensory areas52 to higher-order associa-
tion areas53, indicating that they may reflect a more general functional 
specialization.

Basket cell disinhibition
Many VIP interneurons preferentially inhibit other inhibitory neurons. 
Such disinhibitory VIP neurons have been shown to strongly target SST 
neurons across cortical areas34,35 and, to a lesser extent, fast spiking or 
PV neurons35,54. Here we found two classes of disinhibitory specialists 
with distinct and specific targets: one preferring putative SST cells and 
one preferring basket cells.

Fast spiking or PV basket cells are inhibited by many sources, includ-
ing other PV cells23,34, SST cells55 and even neurogliaform cells56. How-
ever, the basket-targeting disinhibitory specialists differ from these 
other pathways in their specificity—not only do they distribute most 
synaptic output onto basket cells instead of any other inhibitory or 
excitatory targets but they do so with larger synapses and more syn-
apses per connection. This highly specific targeting offers an intriguing 
pathway to control basket-cell-mediated excitatory gain or synchrony 
without significantly affecting other neuronal populations. Determin-
ing what conditions cause these cells to be active will be important for 
understanding their functional effect. Future experiments will also be 
required to determine their molecular subclass.

Limitations
The principal concern is the generalizability of data, because it comes 
from a single animal, in one location near the edge of VISp, and has at 
most a few examples per cell type. However, companion work from 
the same dataset focusing on several examples of morphologically 
defined cell types shows consistent target preferences31,57, and our 
data also agree with recent functional measurements of type-specific 
connectivity of SST cells21. We thus expect that the broad connectivity 
results will apply generally, although it will be important to measure 
the variability across individual cells, distinct animals and locations 
in cortex.

This study also only considered cells and connectivity in a narrow 
range of distances and limited volume. If cells change their connectivity 
with distance, as has been seen in excitatory neurons58, this would bias 
the observed connectivity distributions. Extending a similar analysis 
across a much wider extent will be important for building a complete 
map of inhibitory cell types and more firmly establishing the nature 
of inhibitory motif groups.

Multimodal cell typing with EM
The M-types found here from morphology and synaptic properties 
generally agree with approaches from morphology alone59 or in com-
bination with other modalities8,9, in particular distinguishing cells in 
upper layer and lower layer 2/3 and differentiating between projec-
tion subclasses. Sublaminar variation is also found in transcriptomic 
studies, with several excitatory clusters in upper layer 2/3 in VISp60,61 
and variation in other layers, although it is not clear if they correspond 
precisely to the M-types observed here.

To facilitate subsequent analysis of anatomy, connectivity and ultra-
structure, all EM data, segmentations, skeletons and tables of synapses 
and cell types are available are available via the MICrONS-Explorer 
website2. However, making the best experimental use of EM data will 
require linking EM to genetic tools. Patch-seq, which generates com-
bined electrophysiology, transcriptomic and morphological data, 
was used in a companion study to quantitatively link particular Marti-
notti cells from EM to specific transcriptomic subtypes31. At present, 
however, transcriptomic clusters often have diverse morphologies 
and probably diverse connectivity9,16. This suggests that the process 
of linking structural and molecular datasets should aim to become 
bidirectional, not only decorating EM reconstructions with transcrip-
tomic information but also using EM to identify cell types with distinct 

connectivity and analysing Patch-seq data to identify distinguishing 
transcriptomic markers or collecting more examples.
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Any methods, additional references, Nature Portfolio reporting summa-
ries, source data, extended data, supplementary information, acknowl-
edgements, peer review information; details of author contributions 
and competing interests; and statements of data and code availability 
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Methods

This dataset was acquired, aligned and segmented as part of the 
larger MICrONS project. Methods underlying dataset acquisition are 
described in full detail elsewhere2,62–64, and the primary data resource 
is described in a separate publication2. We repeat some of the meth-
odological details for the dataset here for convenience.

Animal preparation for EM
All animal procedures were approved by the Institutional Animal Care 
and Use Committee at the Allen Institute for Brain Science or Baylor 
College of Medicine. Neurophysiology data acquisition was conducted 
at Baylor College of Medicine before EM imaging. Afterwards the mice 
were transferred to the Allen Institute in Seattle and kept in a quarantine 
facility for 1–3 days, after which they were euthanized and perfused. 
All results described here are from a single male mouse, age 64 days at 
onset of experiments, expressing GCaMP6s in excitatory neurons via 
SLC17a7-Cre and Ai162 heterozygous transgenic lines (recommended 
and generously shared by Hongkui Zeng at the Allen Institute for Brain 
Science; JAX stock 023527 and 031562, respectively). Two-photon func-
tional imaging took place between P75 and P80 followed by two-photon 
structural imaging of cell bodies and blood vessels at P80. The mouse 
was perfused at P87.

Tissue preparation
After optical imaging at Baylor College of Medicine, candidate mice 
were shipped via overnight air freight to the Allen Institute. Mice were 
transcardially perfused with a fixative mixture of 2.5% paraformal-
dehyde, 1.25% glutaraldehyde and 2 mM calcium chloride, in 0.08 M 
sodium cacodylate buffer, pH 7.4. A thick (1,200 µm) slice was cut with a 
vibratome and post-fixed in perfusate solution for 12–48 h. Slices were 
extensively washed and prepared for reduced osmium treatment based 
on the protocol of ref. 65. All steps were performed at room tempera-
ture, unless indicated otherwise. The first osmication step involved 
2% osmium tetroxide (78 mM) with 8% v/v formamide (1.77 M) in 0.1 M 
sodium cacodylate buffer, pH 7.4, for 180 min. Potassium ferricyanide 
2.5% (76 mM) in 0.1 M sodium cacodylate, 90 min, was then used to 
reduce the osmium. The second osmium step was at a concentration 
of 2% in 0.1 M sodium cacodylate for 150 min. Samples were washed 
with water and then immersed in thiocarbohydrazide for further inten-
sification of the staining (1% thiocarbohydrazide (94 mM) in water, 
40 °C, for 50 min). After washing with water, samples were immersed 
in a third osmium immersion of 2% in water for 90 min. After exten-
sive washing in water, Walton’s lead aspartate (20 mM lead nitrate in 
30 mM aspartate buffer, pH 5.5, 50 °C, 120 min) was used to enhance 
contrast. After two rounds of water wash steps, samples proceeded 
through a graded ethanol dehydration series (50%, 70%, 90% w/v in 
water, 30 min each at 4 °C, then 3 × 100%, 30 min each at room tem-
perature). Two rounds of 100% acetonitrile (30 min each) served as a 
transitional solvent step before proceeding to epoxy resin (EMS Hard 
Plus). A progressive resin infiltration series (1:2 resin:acetonitrile (for 
eample, 33% v/v), 1:1 resin:acetonitrile (50% v/v), 2:1 resin acetonitrile 
(66% v/v) and then 2 × 100% resin, each step for 24 h or more, on a gyro-
tary shaker), was done before final embedding in 100% resin in small 
coffin moulds. Epoxy was cured at 60 °C for 96 h before unmoulding 
and mounting on microtome sample stubs. The sections were then 
collected at a nominal thickness of 40 nm using a modified ATUMtome 
(RMC/Boeckeler62) onto six reels of grid tape62,66.

Transmission EM imaging
The parallel imaging pipeline used in this study62 used a fleet of trans-
mission electron microscopes that had been converted to continu-
ous automated operation. It was built on a standard JEOL 1200EXII 
120 kV transmission electron microscope that had been modified with 
customized hardware and software, including an extended column 

and a custom electron-sensitive scintillator. A single large-format 
CMOS (complementary metal–oxide–semiconductor) camera out-
fitted with a low-distortion lens was used to grab image frames at 
an average speed of 100 ms. The autoTEM was also equipped with a 
nano-positioning sample stage that offered fast, high-fidelity mon-
taging of large tissue sections and a reel-to-reel tape translation sys-
tem that locates each section using index barcodes. During imaging, 
the reel-to-reel GridStage moved the tape and located the targeting 
aperture through its barcode and acquired a 2D montage. We per-
formed quality control on all image data and reimaged sections that 
failed the screening.

Image processing
Volume assembly. The volume assembly pipeline is described in detail  
elsewhere63,64. Briefly, the images collected by the autoTEMs are first 
corrected for lens distortion effects using nonlinear transformations 
computed from a set of 10 × 10 highly overlapping images collected 
at regular intervals. Overlapping image pairs are identified in each 
section, and point correspondences are extracted using features 
extracted using the scale-invariant feature transform. Montage trans-
formation parameters are estimated per image to minimize the sum 
of squared distances between the point correspondences between 
these tile images, with regularization. A downsampled version of these 
stitched sections is produced for estimating a per-section transfor-
mation that roughly aligns these sections in three dimensions. The 
rough aligned volume is rendered to disk for further fine alignment. 
The software tool used to stitch and align the dataset is available on 
GitHub (https://github.com/AllenInstitute/render-modules). To fine 
align the volume, we needed to make the image processing pipeline 
robust to image and sample artefacts. Cracks larger than 30 um (in 
34 sections) were corrected by manually defining transforms. The 
smaller and more numerous cracks and folds in the dataset were 
automatically identified using convolutional networks trained on 
manually labelled samples using 64 × 64 × 40 nm3 resolution images. 
The same was done to identify voxels containing tissue. The rough 
alignment was iteratively refined in a coarse-to-fine hierarchy67 using 
an approach based on a convolutional network to estimate displace-
ments between a pair of images68. Displacement fields were estimated 
between pairs of neighbouring sections and then combined to produce 
a final displacement field for each image to further transform the 
image stack. Alignment was refined first using 1,024 × 1,024 × 40 nm3 
images and then 64 × 64 × 40 nm3 images. The composite image of 
the partial sections was created using the tissue mask previously  
computed.

Segmentation. The image segmentation pipeline is fully described in 
ref. 63. Remaining misalignments were detected by cross-correlating 
patches of image in the same location between two sections after 
transforming into the frequency domain and applying a high-pass 
filter. Combining with the tissue map previously computed, a ‘seg-
mentation output mask’ was generated that sets the output of later 
processing steps to zero in locations with poor alignment. Using pre-
viously described methods69, a convolutional network was trained 
to estimate intervoxel affinities that represent the potential for neu-
ronal boundaries between adjacent image voxels. A convolutional 
network was also trained to perform a semantic segmentation of 
the image for neurite classifications, including (1) soma + nucleus,  
(2) axon, (3) dendrite, (4) glia and (5) blood vessel. Following the methods  
described in ref. 70, both networks were applied to the entire dataset 
at 8 × 8 × 40 nm3 in overlapping chunks to produce a consistent predic-
tion of the affinity and neurite classification maps, and the segmenta-
tion output mask was applied to predictions. The affinity map was 
processed with a distributed watershed and clustering algorithm to 
produce an oversegmented image, where the watershed domains are 
agglomerated using single-linkage clustering with size thresholds71,72.  

https://github.com/AllenInstitute/render-modules
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The over-segmentation was then processed by a distributed mean  
affinity clustering algorithm71,72 to create the final segmentation.

For synapse detection and assignment, a convolutional network 
was trained to predict whether a given voxel participated in a synaptic 
cleft. Inference on the entire dataset was processed using the meth-
ods described in ref. 70 using 8 × 8 × 40 nm3 images. These synaptic 
cleft predictions were segmented using connected components, and 
components smaller than 40 voxels were removed. A separate network 
was trained to perform synaptic partner assignment by predicting the 
voxels of the synaptic partners given the synaptic cleft as an attentional 
signal73. This assignment network was run for each detected cleft, and 
coordinates of both the presynaptic and postsynaptic partner predic-
tions were logged along with each cleft prediction.

For nucleus detection2, a convolutional network was trained to 
predict whether a voxel participated in a cell nucleus. Following the 
methods described in ref. 70, a nucleus prediction map was produced 
on the entire dataset at 64 × 64 × 40 nm3.

Column description and cell classes
The column borders were found by manually identifying a region in 
primary visual cortex that was far from both dataset boundaries and 
the boundaries with higher-order visual areas. A 100 × 100 µm box 
was placed on the basis of layer 2/3 and was extended along the y axis 
of the dataset.

While analysing data, we observed that deep layer neurons had 
apical dendrites that were not oriented along the most direct pia- 
to-white-matter direction, and we adapted the definition of the column 
to accommodate these curved neuronal streamlines. Using a collection 
of layer 5 ET cells, we placed points along the apical dendrite to the cell 
body and then along the primary descending axon towards white mat-
ter. We computed the slant angle as two piecewise linear segments, one 
along the negative y axis to lower layer 5 where little slant was observed, 
and one along the direction defined by the vector-averaged direction 
of the labelled axons. We believe the slant to be a biological feature of 
the tissue and not a technical artefact for several reasons:
1.	 The curvature is not aligned to a sectioning plane or associated with 

shearing or other distortion in the imagery, making it unlikely to be 
a result of the alignment process.

2.	Blood vessel segmentation does not show a large, correlated dis-
tortion in deep layers, making it unlikely to be a result of mechani-
cal stress on the tissue (https://ngl.microns-explorer.org/#!gs://
microns-static-links/mm3/blood_vessels.json). Moreover, it is  
unclear why such stress would affect only layer 5b and below.

3.	Individual examples of neurons with slanted morphologies can 
be found among single-cell reconstructions in the literature: for 
example, several descending bipolar VIP interneurons and layer 6 
pyramidal cells in ref. 16. It is not possible to determine whether these 
individual cases correspond to a larger population of correlated 
arbours, but it suggests these morphologies are not atypical.

4.	Similar curvature has been observed in other large EM datasets from 
visual cortex (data not shown) and light level morphological recon-
structions, particularly among layer 6 pyramidal cells.

Using these boundaries and previously computed nucleus cen-
troids2, we identified all cells in the columnar volume. Coarse cell 
classes (excitatory, inhibitory and non-neuronal) were assigned on 
the basis of brief manual examination and rechecked by subsequent 
proofreading and automated cell typing40. To facilitate concurrent 
analysis and proofreading, we split all false merges connecting any 
column neurons to other cells (as defined by detected nuclei) before 
continuing with other work.

Proofreading
Proofreading was performed primarily by five expert neuroanato-
mists using the CAVE infrastructure74 and a modified version of 

Neuroglancer75. Proofreading was aided by on-demand highlighting 
of branch points and tips on user-defined regions of a neuron on the 
basis of rapid skeletonization (https://github.com/AllenInstitute/
Guidebook). This approach quickly directed proofreader attention 
to potential false merges and locations for extension, as well as allowed 
a clear record of regions of an arbour that had been evaluated.

For dendrites, we checked all branch points for correctness and all tips 
to see if they could be extended. False merges of simple axon fragments 
onto dendrites were often not corrected in the raw data because they 
could be computationally filtered for analysis after skeletonization (see 
below). Detached spine heads were not comprehensively proofread, 
and previous estimates place the rate of detachment at roughly 10–15%. 
Using this method, dendrites could be proofread in about 10 min per cell.

For inhibitory axons, we began by ‘cleaning’ axons of false merges by 
looking at all branch points. We then performed extension of axonal 
tips until either their biological completion or data ambiguities, par-
ticularly emphasizing all thick branches or tips that were well-suited 
to project to new laminar regions. For axons with many thousands of 
synaptic outputs, we followed many but not all tips to completion once 
primary branches were cleaned and established. For smaller neurons, 
particularly those with bipolar or multipolar morphology, most tips 
were extended to the point of completion or ambiguity. Axon proof-
reading time differed significantly by cell type not only because of 
differential total axon length but also because of axon thickness dif-
ferences that resulted in differential quality of autosegmentations, 
with thicker axons being of higher initial quality. Typically, inhibitory 
axon cleaning and extension took 3–10 h per neuron.

The lack of segmentation in the top 10 µm of layer 1 truncates some 
apical tufts and limited reconstruction quality of layer 1 interneurons. 
For those excitatory neurons with extensive apical tufts, particularly 
layer 2 and L5ET cells, the reconstructions here might miss both distin-
guishing characteristics and sources of inhibitory input in that region. 
Similarly, axons in deep layer 6 were generally less complete because 
of alignment quality in white matter.

Manual cell subclass and layer labels
Expert neuroanatomists further labelled excitatory and inhibitory 
neurons into subclasses. Layer definitions were based on considera-
tions of both cell body density (in analogy with nuclear staining) sup-
plemented by identifying kinks in the depth distribution of nucleus 
size near expected layer boundaries40.

For excitatory neurons, the categories used were Layer 2/3-IT, Layer 
4-IT, Layer 5-IT, Layer 5-ET, Layer 5-NP, Layer 6-IT, Layer 6-CT and Layer 
6b (‘L6-WM’) cells. Excitatory expert labels did not affect analysis but 
were used as the basis for naming morphological clusters. Layer 2/3 
and upper Layer 4 cells were defined on the basis of dendritic mor-
phology and cell body depth. Layer 5 cells were similarly defined by 
cell body depth, with projection subclasses distinguished by dendritic 
morphology following ref. 8 and classical descriptions of thick (ET) and 
thin-tufted (IT) cells. Layer 5 ET cells had thick apical dendrites, large 
cell bodies, numerous spines and a pronounced apical tuft, and deeper 
ET cells had many oblique dendrites. Layer 5 IT cells had more slender 
apical dendrites and smaller tufts, fewer spines and fewer dendritic 
branches overall. Layer 5 NP cells corresponded to the ‘Spiny 10’ sub-
class described in ref. 8; these cells had few basal dendritic branches, 
each very long and with few spines or intermediate branch points. Layer 
6 neurons were defined by cell body depth, and some cells were able 
to be further labelled as IT or CT by human experts. Layer 6 pyramidal 
cells with stellate dendritic morphology, inverted apical dendrites or 
wide dendritic arbours were classified as IT cells. Layer 6 pyramidal cells 
with small and narrow basal dendrites, an apical dendrite ascending to 
Layer 4 or Layer 1 and a myelinated primary axon projecting into white 
matter were labelled as CT cells.

For inhibitory neurons, manual cell typing considered axonal and 
dendritic morphology as well as connectivity. Cells that primarily 

https://ngl.microns-explorer.org/#!gs://microns-static-links/mm3/blood_vessels.json
https://ngl.microns-explorer.org/#!gs://microns-static-links/mm3/blood_vessels.json
https://github.com/AllenInstitute/Guidebook
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contacted soma or perisomatic regions were labelled as basket cells. 
Cells that made arbours that extended up to layer 1 or formed a dense 
plexus and primarily targeted distal dendrites were labelled as putative 
SST cells. Cells that remained mostly in layer 1 or had extensive arbouri-
zation and many non-synaptic boutons were labelled as putative Id2 or 
neurogliaform cells. Finally, cells with a bipolar dendritic morphology 
or a multipolar dendritic morphology and output onto other inhibitory 
neurons were labelled as putative VIP cells. Several cells, particularly 
in layer 6, had an ambiguous subclass assignment, typically when their 
connectivity was not basket-like but their morphology was also not 
similar to upper layer Martinotti or non-Martinotti cells.

Skeletonization
To rapidly skeletonize dynamic data, we took advantage of the 
PyChunkedGraph data structure that collects all supervoxels belong-
ing to the same neuronal segmentation into 2 × 2 × 20 µm ‘chunks’ 
with a unique ID and precisely defined topological adjacency with 
neighbouring chunks of the same object. Each chunk is called a ‘level 2 
chunk’, and the complete set of chunks for a neuron and their adjacency 
we call the ‘level 2 graph’ on the basis of its location in the hierarchy 
of the PyChunkedGraph data structure27. We precompute and cache a 
representative central point in space and the volume and the surface 
area for each level 2 chunk and update this data when new chunks are 
created because of proofreading edits. Using the level 2 graph and 
assigning edge lengths corresponding to the distance between the 
representative points for each vertex (that is, each level 2 chunk), we 
run the TEASAR76 algorithm (10 µm invalidation radius) to extract a 
loop-free skeleton. Each of the level 2 vertices removed by the TEASAR 
algorithm is associated with its closest remaining skeleton, making it 
possible to map surface area and volume data to the skeleton. Typical 
edges between skeleton vertices are about 1.7 µm, and new skeletons 
can be computed de novo in about 10 s, making them useful for analysis 
over length scales of tens of micrometre or larger.

To represent the cell body, a further vertex was placed at the location 
of the nucleus centroid, and all vertices within an initial radius and 
topologically connected to centroid were collapsed into this vertex 
with associated data mapping. The radius was determined for each 
neuron separately by consideration of the volume of each cell body.  
A companion work40 computed the volume of each cell body, and we 
generated an effective radius on the basis of the sphere with the same 
volume. To ensure that our values captured potentially lopsided cell 
bodies, we padded this effective radius by a further factor of 1.25. Skel-
etons were rooted at the cell body, with ‘downstream’ meaning away 
from soma and ‘upstream’ meaning towards soma. Each synapse was 
assigned to skeleton vertices on the basis of the level 2 chunk of its 
associated supervoxel. For each unbranched segment of the skeleton 
(that is, between two branch points or between a branch point and end 
point), we computed an approximate radius r on the basis of a cylinder 
with the same path length L and total volume V associated with that 
segment: r V L( = /π ).

Axon/dendrite classification
To detect axons, we took advantage of the skeleton morphology, the 
location of presynaptic and postsynaptic synapses and the clear seg-
regation between inputs and outputs of cortical neurons. For inhibi-
tory cells, we used synapse flow centrality77 to identify the start of the 
axon as the location of maximum paths along the skeleton between 
sites of synaptic input and output. Two inhibitory neurons had two 
distinct, biologically correct axons after proofreading (cell IDs 258362 
and 307059). For these cells, we ran this method twice, masking off 
the axon found after the first run, to identify both. For excitatory 
neurons that did not have extended axons, there were often insuffi-
cient synaptic outputs on their axon for this approach to be reliable. 
Excitatory neurons with a segregation index77 of 0.7 (on a scale with 
0 indicating random distribution of input and output synapses and 

1 indicating perfect input/output segregation) or above were con-
sidered well-separated, and the synapse flow centrality solution was 
used. For cells with a segregation index less than 0.7, we instead looked 
for branches near the soma with few synaptic inputs. Specifically, we 
took identified all skeleton vertices within 30 µm of the cell body and 
looked at the distinct branches downstream from this region. For each 
branch, we computed the total path length and the total number of 
synaptic inputs to get a linear input density. Branches with both a path 
length more than 20 µm and an input density less than 0.1 synaptic 
inputs per micrometre were labelled as being axonal and filtered out 
of subsequent analysis.

We further filtered out any remaining axon fragments merged onto 
pyramidal cell dendrites using a similar approach. We identified all 
unbranched segments (regions between two branch points or between 
a branch point and end point) on the non-axonal region of the skeleton 
and computed their input synapse density. Starting from terminal 
segments (that is, those with no downstream segments), we labelled 
a segment as a ‘false merge’ if it had an input density less than 0.1 syn-
aptic inputs per micrometre. This process iterated across terminal 
segments until all remaining had an input density of at least 0.1 inputs 
per micrometre. Falsely merged segments were masked out of the 
skeleton for all analysis.

Excitatory dendrite compartments
We assigned all synaptic inputs onto excitatory neurons to one of four 
compartments: soma, proximal dendrite, distal basal dendrite and 
distal apical dendrite. The most complex part was distinguishing the 
basal dendrite from the apical dendrite. Although easy in most cases 
for neurons in layer 3–5 because of the consistent nature of apical den-
drites being single branches reaching towards layer 1, this is not true 
everywhere. In upper layer 2/3, cells often have several branches in 
layer 1 equally consistent with apical dendrites, and in layer 6 there are 
often cells with apical dendrites that stop in layer 4 and that point 
towards white matter or even that lack a clear apical branch entirely. 
To objectively and scalably define apical dendrites, we built a classifier 
that could detect between zero and three distinct apical branches per 
cell. Following the intuition from neuroanatomical experts, we used 
features on the basis of the branch orientation, location in space, rela-
tive location compared to the cell body and branch-level complexity. 
Specifically, we trained a random forest classifier to predict whether 
a skeleton vertex belonged to an apical dendrite on the basis of several 
features: depth of vertex, depth of soma, difference in depth between 
soma and vertex, vertex distance to soma along the skeleton, vertex 
distance to farthest tip, normalized vertex distance to tip (between 0 
and 1), tortuosity of path to root, number of branch points along the 
path to root, radial distance from soma, absolute distance from soma 
and angle relative to vertical between the vector from soma to vertex. 
We aggregated predictions in each branch by summing the log-odds 
ratio from the model prediction, with the net log-odds ratio saturating 
at ±200. Finally, for each branch i with aggregated odds ratio Ri,  
we compare branches to one another via a soft-max operation: 
S R R= exp( /50)/∑ exp( /50)i i j j . Branches with a maximum tip length of 
less than 50 µm were considered too short to be a potential apical den-
drite and excluded from consideration and not included in the denom-
inator. Branches with both Ri > 0 (evidence is positive towards being 
apical) and Si > 0.25 were defined to be apical. Note that the soft-max 
was chosen to allow multiple apical branches if they had similar aggre-
gated odds ratios, which was found to be necessary for upper layer 
pyramidal neurons. Training data were selected from an initial 50 ran-
dom cells, followed by a further 33 cells chosen representing cases 
where the classifier did not perform correctly. Performance on both 
random and difficult cells had an F1-score of 0.9297 (86 true positives, 
599 true negatives, 2 false positives and 11 false negatives) on the basis 
of leave-one-out cross validation, with at least one apical dendrite cor-
rectly classified for all cells.



Article
Compartment labels were propagated to synapses on the basis of 

the associated skeleton vertices. Soma synapses were all those associ-
ated with level 2 chunks in the soma collapse region (see the section 
‘Skeletonization’). Proximal dendrites were those outside of the soma 
but within 50 µm after the start of the branch. Distal basal synapses 
were all those associated with vertices more distant than the proximal 
threshold but not on an apical branch. Apical synapses were all those 
associated with vertices more distant than the proximal threshold and 
on an apical branch.

Inhibitory feature extraction and clustering
Many classical methods of distinguishing interneuron classes are based 
on how cells distribute their synapses across target compartments.  
Following proofreading, expert neuroanatomists attempted to classify 
all inhibitory neurons broadly as ‘basket cells’, ‘SST-like cells’, ‘VIP-like 
cells’ and ‘neurogliaform/layer 1’ cells on the basis of connectivity prop-
erties and morphology. Although 150 cells were labelled on this basis,  
a further 13 neurons were considered uncertain (primarily in layer 6),  
and in some cases manual labels were low confidence. To classify inhibi-
tory neurons in a data-driven manner, we thus measured four properties 
of how cells distribute their synaptic outputs:
1.	 The fraction of synapses onto inhibitory neurons.
2.	The fraction of synapses onto excitatory neurons that are onto soma.
3.	The fraction of synapses onto excitatory neurons that are onto proxi-

mal dendrites.
4.	The fraction of synapses onto excitatory neurons that are onto distal 

apical dendrites.
�Because the fraction of synapses targeting all compartments sums 
to one, the last remaining property, synapses onto distal basal den-
drites, was not independent and thus was measured but not included 
as a feature. Inspection of the data suggested two more properties 
that characterized synaptic output across inhibitory neurons:

5.	 The fraction of synapses that are part of multisynaptic connections, 
those with at least two synapses between the same presynaptic neu-
ron and target neuron.

6.	The fraction of multisynaptic connection synapses that were also 
within 15 µm of another synapse with the same target, as measured 
between skeleton nodes. Note that we evaluated the robustness of 
this parameter and found that intersynapse distances from 5 to more 
than 100 µm have qualitatively similar results (Extended Data Fig. 2).

Using these six features, we trained a linear discriminant classifier 
on cells with manual annotations and applied it to all inhibitory cells. 
Differences from manual annotations were treated not as inaccurate 
classifications but rather as a different view of the data.

Excitatory feature extraction and clustering
To characterize excitatory neuron morphology, we computed features 
based only on excitatory neuron dendrites and soma. The features 
were as follows:
1.	� Median distance from branch tips to soma per cell.
2.�	Median tortuosity of the path from branch tips to soma per cell. 

Tortuosity is measured as the ratio of path length to the Euclidean 
distance from tip to soma centroid.

3.�	Number of synaptic inputs on the dendrite.
4.�	Number of synaptic inputs on the soma.
5.	� Net path length across all dendritic branches.
6.�	Radial extent of dendritic arbour. We define ‘radial distance’ to be 

the distance in the same plane as the pial surface. For every neuron, 
we computed a pia-to-white-matter line, including slanted region in 
deep layers, passing through its cell body. For each skeleton vertex, 
we computed the radial distance to the pia-to-white-matter line at 
the same depth. To avoid any outliers, the radial extent of the neuron 
was defined to be the 97th percentile distance across all vertices.

7.	� Median distance to soma across all synaptic inputs.

	8.	 Median synapse size of synaptic inputs onto the soma.
	9.	 Median synapse size of synaptic inputs onto the dendrites.

	10.	� Dynamic range of synapse size of dendrite synaptic inputs. This 
was measured as the difference between 95th and fifth percentile 
synapse sizes.

	 11.	� Shallowest extent of synapses, on the basis of the fifth percentile 
of synapse depths.

	12.	� Deepest extent of synapses, on the basis of the 95th percentile of 
synapse depths.

	13.	� Vertical extent of synapses, on the basis of the difference between 
95th and fifth percentile of synapse depths.

	14.	� Median linear density of synapses. This was measured by computing 
the net path length and number of synapses along 50 depth bins 
from layer 1 to white matter and computing the median. A linear 
density was found by dividing synapse count by path length per 
bin, and the median was found across all bins with non-zero path 
length.

	15.	� Median radius across dendritic skeleton vertices. To avoid the  
region immediately around the soma from having a potential out-
lier effect, we only considered skeleton vertices at least 30 µm 
from the soma.

Three more sets of features used component decompositions. To 
more fully characterize the absolute depth distribution of synaptic 
inputs, for each excitatory neuron, we computed the number of syn-
apses in each of 50 depth bins from the top of layer 1 to surface of white 
matter (bin width approximately 20 µm). We Z-scored synapse counts 
for each cell and computed the top six components using SparsePCA. 
The loadings for each of these components on the basis of the net syn-
apse distribution were used as features.

To characterize the distribution of synaptic inputs relative to the cell 
body instead of cortical space, we computed the number of synapses 
in 13 soma-adjusted depth bins starting 100 µm above and below the 
soma. As before, synapse counts were Z-scored, and we computed the 
top five components using SparsePCA. The loadings for each of these 
components were used as further features.

To characterize the relationship with branching to distance, we meas-
ured the number of distinct branches as a function of distance from the 
soma at ten distances, every 30 µm starting at 30 µm from the soma 
and continuing to 300 µm. For robustness relative to precise branch 
point locations, the number of branches were computed by finding 
the number of distinct connected components of the skeleton found 
in the subgraph formed by the collection of vertices between each 
distance value and 10 µm towards the soma. We computed the top 
three singular value components of the matrix on the basis of branch 
count versus distance for all excitatory neurons, and the loadings were 
used as features.

All features were computed after a rigid rotation of 5 degrees to 
flatten the pial surface and translation to set the pial surface to 0 
on the y axis. Features on the basis of apical classification were not 
explicitly used to avoid ambiguities on the basis of both biology and 
classification.

Using this collection of features, we clustered excitatory neurons 
by running phenograph78 500 times with 95% of cells included each 
time. Phenograph finds a nearest-neighbourhood graph on the basis 
of proximity in the feature space and clusters by running the Leiden 
algorithm for community detection on the graph. Here we used a graph 
on the basis of ten nearest neighbours and clustered with a resolution 
parameter of 1.3. These values were chosen to consistently separate 
layer 5 ET, IT and NP cells from one another, a well-established bio-
logical distinction. A coclustering matrix was assembled with each 
element corresponding to the number of times two cells were placed 
in the same cluster. To compute the final consensus clusters, we per-
formed agglomerative clustering with complete linkage on the basis 
of the coclustering matrix, with the target number of clusters set by 



a minimum Davies–Bouldin score and a maximum Silhouette score. 
Clusters were then named on the basis of the most frequent manually 
defined cell type in the cluster and reordered on the basis of median 
soma depth. The labelling of cells as layer 2 and layer 3 was formed on 
the basis of soma depth and a morphology with a relatively flat morphol-
ogy, often with no distinct apical trunk, although often apical-tuft-like 
branches emitted directly from the cell body. The L2c subclass was 
ambiguously defined between the two categories, with cells that had 
a distinct apical trunk but with connectivity and other properties that 
seemed more similar to layer 2 subclasses.

To compute the importance of each feature for each M-type, for each 
M-type we trained a random forest classifier to predict whether a cell 
belonged to it using scikit-learn79. Because the classes were strongly 
imbalanced, we used SMOTE resampling to oversample datapoints 
from the smaller class. We used the Mean Decrease in Impurity metric, 
which quantifies how often a given feature was used in the decision 
tree ensemble.

Inhibitory connectivity and selectivity
To measure intracolumnar inhibitory connectivity, we first restricted 
synaptic outputs to the axon of each inhibitory neuron, as we have not 
observed any correctly classified synaptic outputs on dendritic arbours 
in this dataset. One cell with fewer than 30 synaptic outputs was omit-
ted because of insufficient size. All remaining synaptic outputs across 
all interneurons were then filtered to include only those that target 
cells in the column, unless otherwise specified. Each output synapse 
was also labelled with the target skeleton vertex, dendritic compart-
ment and M-type of the target neuron on the basis of the compartment 
definitions above.

For the inhibitory motif group clustering, for each interneuron we 
first computed the number of synapses across each excitatory M-types 
in the column. This synaptic output budget was then normalized per 
cell to generate a vector for each neuron with elements ranging from 
zero to one. Normalized synaptic output budgets were oversegmented 
using k-means (k = 20) with Euclidean distances 500 times, and a matrix 
of coclustering frequency—that is, the number of times two cells were 
put in the same k-means cluster—between individual cells was com-
puted. Final M-types were found through agglomerative clustering 
with complete linkage of the coclustering matrix, scanning from two 
to 25 output clusters and selecting a final value of 18 on the basis of 
silhouette score and Davies–Bouldin score.

For measuring the synaptic output budget across cell types across 
the dataset (that is, inside and outside the column), we used a hierar-
chical classifier on the basis of a collection of perisomatic features 
that was trained on the data-driven clustering from the column  
sample40. Only synapses onto object segmentation associated with a 
single nucleus and a cell type classification were used. Although most 
of these other targets were not proofread, estimates on the basis of 
proofread neurons indicate that 99% of non-proofread input synapses  
are accurate40.

To measure inhibitory selectivity in the column, we compared the 
M-type distribution of its synaptic outputs to the M-type distribu-
tion of synaptic inputs according to a null model accounting for 
cell abundance, synapse abundance and depth. We first generated 
a baseline distribution of all 4,504,935 somatic or dendritic synaptic 
inputs to all column cells, where each synapse was associated with 
a precise depth, target compartment and M-type. We discretized 
synaptic inputs into 50 depth bins spanning pia to white matter, each 
covering approximately 20 µm and each of the five compartments: 
soma, proximal dendrite, basal dendrite, apical dendrite or inhibitory 
neuron. For each interneuron, we similarly discretized its synaptic 
output into the same bins, compartments and M-types. To generate a 
randomized output distribution preserving both observed depth and 
compartment distributions, we randomly picked synapses from the 
baseline distribution with the observed depth bins and compartment 

targets but without regard to M-type. We computed 10,000 rand-
omized distributions per interneuron. To get a selectivity index, we 
compared the observed number of synapses onto a given M-type to 
the median of the number of synapses from the shuffle distribution. 
To get a significance for the selectivity index for a given M-type, we 
directly computed the two-sided P value of the observed number of 
synapses relative to the shuffle distribution for that M-type. P val-
ues were corrected for several comparisons using the Holm–Sidak 
method in each interneuron for those M-types with non-zero potential 
connectivity. Selectivity was only measured in the column because 
we did not generate compartment labels for unproofread dendrites 
outside of the column.

On connectivity cards, we also show a similar selectivity index on 
the basis of compartment rather than M-type. In that case, the shuffled 
distribution preserves observed depth and M-type output distributions 
but not compartments.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Data for this paper were analysed at materialization version 795. 
Synapse tables for column cells, neuronal skeletons and tables for 
manual and automatic cell types and connectivity groups are available 
at Zenodo (https://doi.org/10.5281/zenodo.7641780)80. EM imagery 
and segmentation can be found at https://www.micronsexplorer.org/
cortical-mm3. Source data are provided with this paper.

Code availability
Analysis code is available at https://github.com/AllenInstitute/Colum-
nCensusCSM. All analysis was performed in Python v.3.9 using cus-
tom code, making extensive use of CAVEclient (https://github.com/
seung-lab/CAVEclient) and CloudVolume81 to interact with data infra-
structure; MeshParty82 to analyse skeletons; and the libraries Matplot-
lib83, Numpy84, Pandas85, Scikit-learn79, Scipy86, stats-models87 and VTK88 
for general computation, machine learning and data visualization.
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Extended Data Fig. 1 | Compartment classification pipeline. a) Description 
of the compartment classification pipeline. b–d) Pipeline applied to an 
example layer 3 pyramidal cell. b) Apical probability per vertex. c) Branch-level 
apical classification. d) Final organization into four dendritic compartments 
based on apical classification and distance rules. e) Quantification of quality  
of apical branch classification based on leave-one-out classification with a 
training set based on 50 randomly selected cells and 23 cells chosen to improve 
difficult classifications. Each dot is a branch of a test pyramidal cell, colored 

red if apical and blue if not apical. X-axis is the net log-odds of the branch being 
apical (capped at ±200) and the y-axis is the relative apical quality based on a 
soft-max operation (see Methods for details). Branches in the upper right 
quadrant were classified as apical. The method was able to correctly classify at 
least one apical branch for all cells, and “false positives” were often associated 
with borderline cases. f) Distribution of synaptic inputs onto excitatory 
neurons with depth by dendritic compartment. Values are based on counting 
synapses in bins at a given depth, but at any location laterally.



Article

Extended Data Fig. 2 | Closest distances between synapses in multisynaptic 
connections. a) Cumulative distributions of the closest synapse onto the same 
target along the axonal arbor per manually labeled inhibitory neuron subclass. 
Excitatory (left) and inhibitory (right) targets shown separately. Vertical gray 

line indicates the value used for “clumpiness” in the main text. b) Same as a, but 
for the cluster-based labels and with log scale to highlight shorter distances. c) 
The “clumpiness” metric using different distance thresholds. The qualitative 
relationships are extremely robust to distance thresholds.



Extended Data Fig. 3 | Inhibitory neuron properties. a) Projections of all 
analyzed interneurons (n = 163) projected on a 3-d space based on linear 
discriminant analysis (LDA) using connectivity features (shown in c). Fully 
colored dots indicate manually classified cells used as training data for LDA, 
while dots with grey centers were labeled based on this classification.  
b) Matrix showing relationship between anatomical subclasses and manual 

classifications. c) Individual connectivity features, organized by subclass. 
Colored dots are individual cells, black dots indicate median with error bars 
showing a bootstrapped 95% confidence interval. d–g) Morphology of all 
PeriTCs (d), DistTCs (e), SparTCs (f), and InhTCs (g). Scale bars are 500 µm. Dark 
and thick lines are dendrite, thinner and lighter are axon. Cells are ordered by 
soma depth.
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Extended Data Fig. 4 | Inhibition of inhibition. a) Connectivity dotplot 
between inhibitory neurons, organized by inhibitory subclasses, organized by 
soma depth. For each panel, the scatterplot reflects the connectivity from cells 
in the presynaptic subclass (x-axis) to cells in the postsynaptic subclass (y-axis). 
Each dot is a single connection, with larger dots having more synapses. The 

location of each dot corresponds to the depth of the pre- and post-synaptic  
cell bodies. Stem plots on top and side indicate the net synaptic inputs and  
net synaptic outputs of each cell in each subclass within the column sample.  
b) Same as a, but for InhTCPeri and InhTCDist onto PeriTCs separately.



Extended Data Fig. 5 | A laminar-specific circuit for InhTCdist cells.  
a) Morphology of all InhTC that preferentially target DistTCs. Cells are sorted 
by soma depth. b) Connectivity dotplot for synapses from InhTCdist onto DistTCs. 
In the grid, each dot represents a connection from one InhTC onto one DistTC, 
with the number of synapses indicated by dot size. The location of the dot 
corresponds to the soma depth of the pre- and post-synaptic cells. Stem plots 
on top and side indicate the net synaptic inputs and net synaptic outputs of 

each InhTCdist and DistTC. Note that DistTCs in layer 2/3 receive little input  
from InhTCs, compared to those in layer 4 and upper layer 5. c) Connectivity 
scatterplot for synapses from DistTCs onto InhTCdist, as in b. Note that the 
DistTCs in layer 2/3 also form few synaptic outputs onto InhTCdist. d) Distribution 
across M-types of synaptic outputs across low-connection DistTCs and 
high-connection DistTCs. e) Connectivity cartoon suggested by this data.
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Extended Data Fig. 6 | M-type clustering and manual labels. a) Matrix of 
manual labels (x-axis) vs M-types. b) UMAP representation of features, colored 
by manually labeled cell types. c) Co-clustering matrix of excitatory cells, 
indicating the number of times a pair of cells was clustered together by 

iterations of the phonograph algorithm. Cells are ordered by subsequent 
agglomerative clustering on this matrix. d) Feature importance for each M-type, 
based on training binary random forest classifiers to predict each M-type 
separately and computing the mean decrease in impurity for each feature.



Extended Data Fig. 7 | Somatic versus dendritic synapses across all 
excitatory M-types. a) Median number of dendritic and somatic synapses for 
excitatory neurons of all M-types. Pearson r = 0.96, p = 5 × 10−10. b) Number of 
dendritic and somatic input synapses across all excitatory neurons, colored by 
M-type. Pearson r = 0.86, p < 1 × 10−10. Black line indicates linear fit with 95% 
confidence intervals from bootstrapping. c) Individual ordinary least square 

fits (with 95% confidence interval) for each M-type of z-scored dendritic 
synapses vs z-scored somatic synapses. With the exception of L5NP cells and 
deep layer 6b L6wm cells, all M-types have a positive relationship between 
predominantly inhibitory somatic synapses and predominantly excitatory 
dendritic synapses. d) Number of dendritic vs somatic input synapses for each 
M-type separately, linear fit line and 95% confidence interval.
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Extended Data Fig. 8 | Additional characterization of motif groups.  
a–r) Morphology of all cells, organized by motif group. Within each group,  
cells are ordered by soma depth. Colors indicate M-type, darker lines indicate 
dendrites. s) The arbors of cells extend well beyond the columnar data. The 
scatterplot depicts a top-down view of soma locations of all synaptic targets of 
Cell ID 260622. Black dots are cells within the column, red dots are cells outside 
the column sample; dot size is proportional to number of synapses. t) The 
number of synapses from each interneuron onto target neurons within the 
column (black) and anywhere the dataset (red). Interneurons were ordered by 
within-column synapse count. The mean cell had 5.49 times more synapses 
across the dataset than onto column targets alone (black dashed line). Only 

targets passing basic quality control criteria were included. Note that while 
cells outside the sampled column are not necessarily proofread, synapses onto 
unproofread dendrites are nearly always correct (see Methods). u) Scatterplot 
of output synapse budget values within-column and dataset-wide (see v). The 
blue line indicates equality. The Pearson correlation between within-column 
measurements with the dataset-wide measurements was R = 0.9, not including 
trivial zeros (see Methods). v) Output synapse budget for each interneuron 
onto dataset-wide target M-types, using predictions from perisomatic features 
from Elabbady et al.40. Note that the L6wm M-type was not included in 
predictions and is thus trivially zero for all interneurons.



Extended Data Fig. 9 | Additional connectivity statistics within motif 
groups. Connection density (left) measures the fraction of cells for a given 
M-type within the column targeted with at least 1 synapse. Synapses per 

connection (right) measures the average number of synapses in each observed 
connection. Single cell values are represented by dots, median values are 
shown with bars.
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Extended Data Fig. 10 | See next page for caption.



Extended Data Fig. 10 | Selectivity and null models for inhibitory 
connectivity. a) Number of synapses per M-type, compartment, and depth 
bin. These values were used as the baseline against which to compare synaptic 
output distributions for each inhibitory neuron. b) Expected value of each 
presynaptic inhibitory neuron according to an increasingly complex set of null 
models. Each row represents the fraction of synaptic outputs from a given 
inhibitory neuron (ordered as in Fig. 5a), distributed across excitatory M-types. 
From the left: 1) Synaptic outputs were proportional to the number of cells in 
each M-type, regardless of location in space. This approach accounts for the 
differing cell frequency for each M-type. 2) Synaptic outputs were proportional 
to the net number of input synapses for a given M-type, regardless of location 
in space. This approach accounts for the diversity in synaptic inputs for  
each M-type. 3) Synaptic outputs were distributed across compartments for 
each inhibitory cell as observed and distributed across M-types for each 
compartment separately. This approach accounts for the observed differences 
in compartment targeting for different interneurons. 4) Synaptic outputs  
were distributed across M-types within each of 50 depth bins, matching the 
observed depth distribution of synaptic outputs for each inhibitory neuron. 
This approach accounts for the spatial distribution of synapses, but not 
compartment targeting. 5) Synaptic outputs were distributed across M-types 
within both depth bins and compartments, matching the observed distribution 
of both. This approach accounts for both the spatial distribution of synapses 
and compartment targeting and is the most complete model considered here. 

At the far right, the observed distribution on the same scale, repeating the  
data in Fig. 5. c) Selectivity index (SI) for all cells, as described in the main text. 
Purple values have the observed number of output synapses significantly 
higher than a null model with matched compartment and depth targeting, 
while green are significantly less. Non-significant SI values are treated as 1. d) 
Difference between the observed distribution and the null model distribution 
for each cell as measured by the Kullback-Leibler divergence (from observed 
distribution to null distribution), by inhibitory subclass. Each colored dot is a 
cell, black dots are median with error bars indicating a 95% confidence interval 
based on a bootstrap. e) Comparison between the most complete null model 
across inhibitory subclasses. The PeriTCs have the lowest KL divergence of all 
types, indicating that the null model best predicts their connectivity. Note also 
that the individual cells exhibit a range of specificity relative to null models. f) 
Similarity of M-type synapse distributions in space, using the Bhattacharyya 
distance between the depth distribution of synaptic inputs onto soma and 
proximal dendrites (left) and distal and apical dendrite (right). Values closer to 
1 indicate more similar distributions, values closer to 0 indicate more distinct 
distributions. g) All Bhattacharyya distance comparisons in e, with colored 
dots indicating pairs of distinct M-types, black dots indicating the median, and 
error bars showing a bootstrapped 95% confidence interval. Across all pairs, 
synaptic inputs onto the perisomatic and somatic compartments are more 
spatially segregated across different M-types than synaptic inputs onto distal 
and apical dendrites (p = 3.0 × 10−19, Mann-Whitney U test).
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