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Electron microscopy (EM) is widely used for studying cellular structure and network con-

nectivity in the brain. We have built a parallel imaging pipeline using transmission electron

microscopes that scales this technology, implements 24/7 continuous autonomous imaging,

and enables the acquisition of petascale datasets. The suitability of this architecture for large-

scale imaging was demonstrated by acquiring a volume of more than 1 mm3 of mouse

neocortex, spanning four different visual areas at synaptic resolution, in less than 6 months.

Over 26,500 ultrathin tissue sections from the same block were imaged, yielding a dataset of

more than 2 petabytes. The combined burst acquisition rate of the pipeline is 3 Gpixel per sec

and the net rate is 600 Mpixel per sec with six microscopes running in parallel. This work

demonstrates the feasibility of acquiring EM datasets at the scale of cortical microcircuits in

multiple brain regions and species.

https://doi.org/10.1038/s41467-020-18659-3 OPEN

1 Allen Institute, Seattle, WA, USA. 2 Voxa, Seattle, WA, USA. 3 Harvard Medical School, Boston, MA, USA. 4These authors contributed equally: Wenjing Yin,
Derrick Brittain, Jay Borseth. ✉email: wenjingy@alleninstitute.org; clayr@alleninstitute.org; nunod@alleninstitute.org

NATURE COMMUNICATIONS |         (2020) 11:4949 | https://doi.org/10.1038/s41467-020-18659-3 | www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-18659-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-18659-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-18659-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-18659-3&domain=pdf
http://orcid.org/0000-0002-3307-9160
http://orcid.org/0000-0002-3307-9160
http://orcid.org/0000-0002-3307-9160
http://orcid.org/0000-0002-3307-9160
http://orcid.org/0000-0002-3307-9160
http://orcid.org/0000-0002-2876-4382
http://orcid.org/0000-0002-2876-4382
http://orcid.org/0000-0002-2876-4382
http://orcid.org/0000-0002-2876-4382
http://orcid.org/0000-0002-2876-4382
http://orcid.org/0000-0002-4618-295X
http://orcid.org/0000-0002-4618-295X
http://orcid.org/0000-0002-4618-295X
http://orcid.org/0000-0002-4618-295X
http://orcid.org/0000-0002-4618-295X
http://orcid.org/0000-0002-8384-7500
http://orcid.org/0000-0002-8384-7500
http://orcid.org/0000-0002-8384-7500
http://orcid.org/0000-0002-8384-7500
http://orcid.org/0000-0002-8384-7500
http://orcid.org/0000-0002-8697-6797
http://orcid.org/0000-0002-8697-6797
http://orcid.org/0000-0002-8697-6797
http://orcid.org/0000-0002-8697-6797
http://orcid.org/0000-0002-8697-6797
http://orcid.org/0000-0003-2001-4568
http://orcid.org/0000-0003-2001-4568
http://orcid.org/0000-0003-2001-4568
http://orcid.org/0000-0003-2001-4568
http://orcid.org/0000-0003-2001-4568
mailto:wenjingy@alleninstitute.org
mailto:clayr@alleninstitute.org
mailto:nunod@alleninstitute.org
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Serial-section electron microscopy has a long history of
elucidating brain structure and connectivity1–3. Sixty years
after it was first used in neuroscience3, it remains the gold

standard method for describing neuronal morphology and iden-
tifying synapses. With recent technical advances, electron micro-
scopy has been through a renaissance. The first complete
connectome, of an entire worm nervous system2, has been
updated and extended4,5, while progress in system automation6–11

has enabled large scale studies of the nervous systems in the fly,
fish, bird, and mammal7,10,12–25. In some cases, such as for the
fruit fly10, the datasets include the totality of the adult brain, while
in mammals the largest dataset (~0.07 mm3) includes a fraction of
a thalamic region23 (incidentally the same structure, the dorsal
lateral geniculate nucleus, was the target of one of the largest 20th
century reconstructions in the mammalian brain26).

A longstanding goal has been to reconstruct a complete local
cortical microcircuit. Depending on the species and cortical
region, this might require imaging one cubic millimeter or more,
at least an order of magnitude larger than previous datasets.
Imaging at the scale of a cubic millimeter is best done on EM
systems capable of handling thousands of sections at a time,
offering fast imaging without sacrificing resolution. Such EM
systems should also provide high degrees of automation and
reliability in order to permit unsupervised continuous operation.

In the past two decades, high-throughput EM has been trans-
formed by powerful developments in technology. For example,
serial block-face scanning electron microscopy (SB-SEM), with the
ultramicrotome in the microscope6,27, has been used for multiple
regions and species19,21,28. The use of SEM back-scattered electrons
at low electron energies confines the depth of the electron signals at
the surface of the block and yields high z-resolution19. An alter-
native block-face approach uses focus ion beam scanning electron
microcopy (FIB-SEM) and generates images with superior z-axis
resolution and isotropic voxels, which accelerates the downstream
3D reconstruction and proofreading8,17. Although SB-SEM and
FIB-SEM are successful approaches for imaging small-volume
datasets, they still face challenges in expanding to large scales such
as the cubic millimeter volume discussed in this work, and FIB-
SEM requires highly customized expensive facilities and engineering
to maintain long-term system stability. One risk of block-face
approaches is that they are destructive methods, unable to reimage
sections if imaging errors occur or for further study. This is in
contrast with serial-section approaches, using either scanning or
transmission electron microscopy (TEM)7,10,11,22,23, which provide
the opportunities for reimaging. For SEM, the highest throughput
has been achieved with multi-beam instruments29,30, which were
originally designed for semiconductor lithography, reverse engi-
neering, and wafer defect inspection, but recently found great
potential in neuronal circuit reconstruction. The multi-beam SEMs
have achieved burst imaging rates at 0.45 Gpixel per sec in mouse
brain29,30, showing a remarkable advancement in acquisition speed
and capability of imaging large sample areas. There are however
factors that lead to long-term effective continuous acquisition rates
still yet to be demonstrated, such as stage motion accuracy and
settling time, focus variation across montage, system stability for
continuous 24/7 operation, and maintenance overhead. The alter-
native to scanning is TEM. TEM is inherently parallel while SEM
acquires data serially, one pixel at a time27,31. Most standard TEMs
can handle 1–5 sections per load, but recently serial-section TEM
has been designed for handling thousands of sections10,32,33,
thereby allowing continuous imaging.

Our overarching strategy is to automate high-resolution TEMs
with precise sample handling and fast cameras to increase the
imaging throughput and quality. TEMs achieve perhaps the
highest signal-to-noise ratio10, especially for fast imaging, but
commercially available TEMs are neither designed nor optimized

to efficiently image serial sections at a large scale. To achieve this
we built upon the original TEMCA7 design to create a system that
has full automation, simple modular design, and systems-level
feedback for error correction and quality control, allowing the
scope to operate with little user intervention after the initial
experimental setup.

We have implemented a distributed platform of multiple high-
throughput automated Transmission Electron Microscopes (auto-
TEMs) that can simultaneously image multiple sections from the
same block of tissue. We refer to this pipeline as Parallel Imaging
using Transmission Electron Automated Microscopy (piTEAM).
The pipeline offers an exceptional combination of high speed, high
resolution, low signal-to-noise, and cost efficiency to map the brain
structure and neural circuits. Throughput can be increased either by
upgrading individual components, such as the camera of each
microscope, or by scaling horizontally with more microscopes.
Parallel imaging is coordinated over multiple scopes, adding
robustness to system failure and downtime, since no single
microscope is a bottleneck for data production. The piTEAM
infrastructure integrates imaging automation at the level of TEM
control, calibration, system monitoring, and the databases of sam-
ples and 2D montages. In the current platform, the burst imaging
rate of each microscope is 0.5 Gpixel per sec (image acquisition
only) and the net continuous imaging rate is 0.1 Gpixel per sec
(including image acquisition and operational overhead time for
image correction, stage movement, image capture, quality control,
and post processing). This imaging pipeline has proved its reliability
by imaging multiple datasets with regions of interest (ROIs) of more
than 1mm2 per section.

Results
Development of an automated transmission electron micro-
scope. The imaging platform described here uses a standard JEOL
1200EXII 120 kV TEM that has been modified with customized
hardware and software. The key hardware modifications are: (1)
an extended column and custom electron-sensitive scintillator
that produce a tenfold increase in the field-of-view with negligible
impact on spatial resolution; (2) a single, large-format CMOS
camera outfitted with a low distortion lens that reduces image
acquisition time to 50–150 ms; (3) a nano-positioning sample
stage that offers fast, high-fidelity montaging of large tissue sec-
tions; and (4) an advanced reel-to-reel tape translation system
that accurately locates each section using index barcodes for
random access on the GridTape32.

Optics. The column extension of an autoTEM is similar to the
original TEMCA design of Bock et al.7 but with an even larger
custom 30.5 cm scintillator that allows over 20 microns (at 4 nm
per pixel resolution) on each side to be captured by a single
CMOS camera. The camera is positioned using a stage with
precision of micrometers for linear and rotational adjustment,
which allows for efficient light gathering using optical lenses with
large apertures and consequent shallow depth of field. Field
distortion is minimized using a high-quality commercial lens
(Zeiss Otus, 55 mm f/1.4). We chose a single large sensor rather
than the original 2 × 2 camera array7 to eliminate the computa-
tional overhead required to queue, process, and quality-control
images from separate cameras. For the mm3 mouse dataset
described below, we initially used 20 Mpixel cameras (XIMEA,
CMOSIS CMV20000), and later upgraded to 50 Mpixel cameras
(CMOSIS CMV50000) that immediately doubled throughput
(burst rate: ~0.5 Gpixel per sec, net rate 0.1 Gpixel per sec per
microscope). More than 70 montages, each 1 mm2, could be
imaged per day per scope. These large-frame high-speed sensors
were unavailable when the first TEMCA prototype was created7

and demonstrate how the parallel imaging approach of TEM
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leverages the tremendous progress in camera sensor technologies.
The use of off-the-shelf cameras decreases cost while permitting
upgrades as new sensors arrive on the market.

Sample handling. We have implemented two different stage
designs to achieve high sample packing density and automa-
tion: (a) a piezo two-axis stage with high-density standard
sample grids (Voxa GridStage SpriteTM, more details discussed
in Methods) and (b) a TEM tape-compatible stage (Voxa
GridStageTM Reel) that can handle thousands of sections in one
sample load. The 1 mm3 data collection detailed below adopted
a GridTape approach: Automated Tape Collecting Ultra-
microtome (ATUM)11 for section collection20,23. This was
pioneered by K. Hayworth et al.34, and was newly engineered to
be GridTape32 developed by Lee et al.

For the reel-to-reel system (Fig. 1c and Supplementary Fig. 1b),
we loaded 5500 sections per autoTEM in a single pump down
cycle. The elimination of repeated sample loading allows for 24/7
continuous imaging over large sample sets. The tape automati-
cally translates between two reels mounted at the opposite sides of
the TEM column and is adjusted through a pinch drive motor
system with speed tuning. Each section on the GridTape is
uniquely identified by a barcode ID and moves through the
channel of in-column GridStage for serial montage. GridStage
encapsulates an optical barcode reader that scans through the
section barcode ID. A customized search algorithm has been
developed to enable bi-directional, sequential, and random
searches of sections during dynamic tape translation to the
desired position. In addition, mechanical clamps within the

GridStage mitigate micro-vibrations and eliminate tape slippage
during fast stage movement that can disrupt absolute position
accuracy. The ON and OFF states of the clamp precisely
synchronize with section montage and section translation to
prevent imaging error. A customized tension sensor within the
vacuum load lock provides dynamic monitoring on tape status
and triggers section barcode reading: tape is tensioned during
movement and is slack during montaging, which mechanically
and thermally isolates the imaging region to facilitate high quality
acquisition.

A software infrastructure for petascale imaging via piTEAM.
An automated electron microscopy pipeline such as piTEAM
requires data-driven, systems level control similar in principle to
the fly-by-wire approach to automation in avionics using a closed
feedback loop. A similar principle is used by our autoTEM system
to control the state of the microscope without human interven-
tion and dynamically change parameters to ensure consistent data
quality and throughput. Live measurements are collected (e.g.,
focus score, pixel intensity histogram spread, brightness uni-
formity, beam centering, lens distortion within FOV) and the
generated data are used to adjust microscope parameters to stay
within given limits defined prior to imaging.

The piTEAM software infrastructure (Fig. 2a) has six core
components that work in synchrony to provide continuous
uninterrupted acquisition: (1) an image acquisition system
(pyTEM); (2) real time image processing (TEM graph); (3) a
graphical user interface (GUI); (4) databases; (5) facility and

Histology

Sectioning

a b c
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Osmicated
section

Grids

Grid tape

Fig. 1 Experimental pipeline from sample preparation to imaging. a Sample preparation. A mouse brain with the region of interest (ROI) indicated with
green dots is sliced into thick brain sections (thickness ≥1 mm). The thick brain sections undergo histology with osmium protocol and become dark (the
green square represents the ROI to be imaged with the electron microscope). After embedding, the block of tissue (1 mm scale bar) is trimmed in a
hexagonal shape and prepared for ultrathin sectioning onto grids or GridTape. b Schematic cross-section of six distributed autoTEMs. c Photograph of an
autoTEM system in the EM suite.
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environment monitoring; and (6) a remote server (pyTEM
Server). Below we provide a brief description of these core
components with more details in the Methods section.

The imaging program pyTEM orchestrates the automated
acquisition. pyTEM controls the microscope via serial ports,
calculates the positions of the images to be captured, issues the
commands to the stage and reel-to-reel systems, writes metadata
files, sends status messages to monitoring system, and publishes

preview images and status to the GUI. During system setup it
includes functions to calibrate beam rotation, pixel size, and
autofocus. The core of the image acquisition pipeline is TEM
Graph (Fig. 2c). It allows the microscopes to perform several
distinct image processing tasks in parallel, such as flat field
correction, focus measurement, image statistics, template match-
ing, lens distortion correction, and file writing. To control the
image acquisition pipeline, we use a browser-based GUI (Fig. 2b
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and Supplementary Figs. 2 and 3). It allows basic user guided
remote operation of a microscope but also instructs the system to
automate serial-section acquisitions. The GUI also displays
quality control results and metadata about the current acquisi-
tion. The databases are crucial when handling datasets with tens
to hundreds of millions of images, and the imaging pipeline relies
on two databases to keep track of imaging, both of which can be
accessed from GUI. First, the TAO (TEM Acquisition Object)
database stores relevant information for each region of interest to
be acquired. Second, TEM database holds records of ROIs that are
acquired. The records include an overview of the tissue ROI,
metadata about the acquisition and a flag to set the state of the
quality of the acquisition. A user can review acquired sections,
and either pass them to be ingested into the alignment pipeline or
reject them for later re-imaging.

In order to sustain continuous and high quality imaging, it is
also important to keep track of the stability of the microscope
facility and environment, and therefore we integrated a multi-
system monitor (MSM) (Supplementary Fig. 5) with the
microscopes to ensure that the systems are operating within
required environmental and mechanical bounds. A series of
sensors that are physically installed on the microscope record
data that are sent to a time series database with a graphical
frontend. Alarms can be triggered if values pass set thresholds,
which can command the pyTEM Server to stop acquisition if
necessary. Finally, each running microscope has a corresponding
instance of a server called the pyTEM Server. The server facilitates
the communication between the GUI, remote monitoring system,
database, and the pyTEM acquisition software. In addition, it
republishes the images and the status streaming from pyTEM to
an arbitrary number of clients and allows the control of TEMs by
multiple users remotely.

Fully automated closed loop imaging workflow and real-time
QC. Beyond the main task of automating TEMs, a further
requirement for the imaging pipeline is to ensure that the mul-
tiple, concurrently active systems are consistently producing high
quality image data and preserving sample integrity. Therefore, the
piTEAM pipeline is designed with fully automated closed-loop
feedback (Fig. 2d).

The digitally controlled microscopes first receive acquisition
parameter inputs and a list of sample barcodes along with the
ROI to image. Before each montage starts, the MSM assesses the
microscope conditions and the system decides whether to
proceed with imaging or to stop the acquisition and put the
microscope in a safe condition. For each section, montage
initialization steps are automatically carried out within minutes,
including centroid finding, flatfield correction, and autofocus, the
values of which are verified and self-corrected before montaging.
For example, if the beam is displaced away from the center of the
FOV due to thermal drift or filament aging, an automated beam
centering routine repositions the beam. Deficient brightness or
poor image focus trigger alerts on the montage status feedback

and the system automatically reattempts new brightfield or
autofocus before montaging.

During montaging, the system will continuously loop through
the following steps (Supplementary Fig. 4): (1) advancing the
tape, (2) seeking a barcode and retrieving the corresponding
TAO, (3) extracting the ROI, and (4) raster scan montaging ROI
or triggering an abort when detecting an error state. Supplemen-
tary Movie 1 shows a live recording of five autoTEM systems
running and collecting 1 mm2 montages, reaching a fast
acquisition rate of about four frames per second on average.
Each acquired image is displayed in pyTEM GUI along with real
time QC statistics such as focus score, tile overlap errors, etc. The
QC information is written into a metadata file along with raw
images and analyzed automatically after a montage completes.
The pipeline makes a risk assessment on whether to proceed to
the next indexed section based on user-defined screening criteria.
If the QC result is good, the image data are sent on to the image
database, otherwise the montage is marked as a QC failure. If the
number of QC failures exceed a user-set threshold, the acquisition
automatically stops for engineering review.

This automated imaging workflow was tested during the
collection of tens of thousands of 2D montages over millions of
individual tiles. The collection of such vast datasets allowed us to
encounter various imaging errors and continuously improve
image data QC metrics to catch them and apply fixes in time.
Detailed imaging error examples are discussed in Supplementary
Fig. 9. Such errors are best caught and corrected during imaging
rather than during post-processing and data analysis, which may
happen weeks or months after acquisition. Therefore, to ascertain
whether the data generated are of sufficient quality for post-
processing, a real-time QC software package has been developed.

Real-time QC provides image quality metrics and system
errors during data acquisition. The results are displayed on the
pyTEM GUI and saved in the metadata file for each individual
montage. To verify sufficient overlap between neighboring image
tiles for 2D stitching, the GPU-based matcher filter utilizes
normalized cross correlation template matching between tile
edges along both X and Y directions (Fig. 3a). Real-time QC
allows immediate visualization and identification of imaging
problems at no additional cost to acquisition speed, because the
typical template matching calculation overlaps with the next stage
move.

Maps of the section and associated QC results are generated at
the end of each montage. Figure 3b shows a typical visualization
of the good vs. bad real-time template matching results. It is
important to note that the matching succeeds even in areas
without tissue such as on Luxel substrates.

Figure 3c–f show the QC outputs of matching overlap quality,
image focus, and image offset in both x and y dimensions from a
good 2D montage. The uniform color pattern across the frame for
match quality (Fig. 3c) and match distance (Fig. 3e, f) indicate
good overlap area in-between neighboring tiles. Figure 3d shows a
fairly uniform focus map, with only tissue structures such as large

Fig. 2 Imaging pipeline and workflow. a The architecture of piTEAM pipeline. It is composed of distributed autoTEMs for parallel imaging, an image record
database, data servers, a sample database (TAO) and Multi-System Monitor (MSM). On each individual autoTEM, imaging is operated through pyTEM
(acquisition software), pyTEM server, pyTEM GUI and TEM Graph. b pyTEM GUI. The left EM image is a preview while the right is an example of parallel
imaging on five systems for 1 mm2 montage. The pyTEM GUI provides the user with an intuitive, web-based interface to perform manual imaging surveys
as well as long serial montage runs containing hundreds or thousands of ROIs. From the web UI, any running autoTEM system can be observed and
controlled. c TEM Graph key components. Images are acquired and loaded into GPU memory. A series of filter graphs apply corrections to the image
(flatfield, down sampling for GUI preview). Separate graphs check image quality and statistics while the image is written to disk in parallel. d Closed-loop
imaging workflow. After pyTEM receives ROIs and acquisition parameters, image acquisition is triggered, and image data are then analyzed on-the-fly on
the acquisition computer. Rejected montages (those failing to meet QC thresholds) are flagged as a montage database instance to be re-imaged. If a
montage passes inspection, it is sent to a data center for post-processing, alignment, and storage.
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blood vessels being highlighted. For comparison, Supplementary
Fig. 9 discusses a few QC failure examples. Overall, this real-time
QC module enables an early identification of imaging errors.

The QC module described above minimizes errors and
interruptions during imaging and ensures high quality and
consistency of images. This has important consequences for the
throughput of the image processing that happens after imaging,
especially on such large datasets where tens to hundreds of
millions of images have to be stitched into sections and aligned
into a coherent 3D volume. For the datasets described in this
manuscript we were able to compute more than 200 point
correspondences along each edge of overlapping image tiles at a
scale factor of 0.35, demonstrating high quality EM images are
sufficient for the feature extractor to find good enough matching
features in the overlapping region at a much lower resolution. It is
also worth noting that an average stitching residual of 2.56 pixels
was achieved on the cubic mm dataset, showing very good
montage quality. In addition, the rough alignment for aligning
the sections in 3D z-space was performed on montages that were
scaled down to a resolution of just 1% of the actual resolution.
Overall, superior quality of the images from the EM imaging
pipeline allows the post-imaging processing to be performed
much faster and cheaper computationally.

Petascale data acquisition using piTEAM. The first dataset
collected by the piTEAM pipeline defined above contained 2500
tissue sections (250 µm × 140 µm, 40 nm thickness) that were
imaged at 3.58 nm × 3.58 nm pixels. A single autoTEM system
imaged the sections in 1 week with a 20MP XIMEA camera and a
GridStage Sprite sample holder (Supplementary Fig. 1 and
Movie 2). The pilot dataset contained about 500 neurons and 3.2
million synapses, spanning over layer 2/3 mouse primary visual
cortex, which have been analyzed to examine network con-
nectivity of pyramidal and chandelier cells15,16.

The biggest challenge for scaling from this 0.003 mm3 to 1
mm3 was throughput. We expanded the imaging platform from a
single microscope to a multi-scope pipeline, which allowed us to
scale the imaging system while maintaining the large electron flux
required for fast exposure. We also transitioned from a low
capacity (10 s of sections) stick-type GridStage Sprite35,36 to a
high capacity (1000 s of sections) GridStage reel-to-reel system
for translating GridTape32 between sections and then montaging.
Over 26,500 sections were divided onto seven reels that were
continuously imaged across five microscopes for almost 6 months.
Using the 20 MP camera, the net image acquisition speed
(including imaging, stage step-and-settle time, imaging overhead
and image correction) averaged 3.3 frames per second (fps). Each
frame contained 3840 × 3840 pixels, while each 1 mm2 montage
was composed of more than 5000 15 µm × 15 µm tiles (Fig. 4e)
with an overlap of 13% between tiles in both X and Y directions.
The 13% was chosen in order to ensure that stage imprecisions
will still ensure a 7% overlap required in order to provide enough
feature matches for stitching. The total file size of a single
montage was about 80 GB producing a daily throughput of 3.6 TB
per system for continuous imaging.

During production, three autoTEMs were upgraded with 50 MP
camera sensors, which increased the frame size to 5408 × 5408
pixels (21 µm× 21 µm). Figure 4b–d show a high-res 50 MP tile
from the dataset with neuronal somata and glia highlighted and
zoomed-in areas at synapse level. The total number of tiles required
per montage was reduced to ~2600 from more than 5000 at an
overlap of 9% in both X and Y, which maintained the same frame
rate during montaging (Fig. 4f). The light-weight piezo stage not
only preserves fast speed but also takes much shorter step-and-settle
time at an average around 100ms. The distribution of one stage

a

b

c d

e f

Good Bad

Fig. 3 Real-time quality control (QC) for capturing image and system
errors. It utilizes the template matching to detect any tile overlap issue
during acquisition, and FFT score to measure the focus quality of each tile.
a Diagram representing the overlap region and template matching between
two image tiles (blue boxes). The template search area (yellow box) is a
region of twice the tile overlap (~13% for 20Mpix camera and 9% for
50Mpix). Three templates are used per edge, and the mean and standard
deviation of the three matching vectors are returned from the filter. b Good
vs. Bad real-time matcher results displayed on GUI: each triangle
represents a matching result (top and down or left and right). Blue hues
indicate that the template is found beyond the expected position, and red
hues indicate that the template is found before the expected position, and
the intensity represents the magnitude of the offset between the ideal and
actual locations. To test the matching operation, we introduced two types
of errors shown in the bad montage. The stage position was artificially
perturbed on row 4, and then on rows 10–11 the beam was blocked,
resulting in black tiles. If the number of matched templates or the standard
deviation of the template match vectors fail to meet thresholds, the tile is
marked as an error. Imaging problems are usually detected as flagged tiles
in the quality map or non-uniform QC output maps. See example QC output
maps: c matcher quality map; d focus map (color code is arbitrary as color
is used only to identify any non-uniform pattern); e x-offset from ideal; f y-
offset from ideal. Blue hue indicates positive stage offset comparing to the
target position, and red hue indicates negative offset. The intensity
represents the magnitude of the offset.
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example is shown in Fig. 4g. Table 1 is a comparison of the
performance between 20 MP and 50 MP camera configurations in
which we assume imaging a 1 × 1 × 1mm volume. The reimaging
rate for the whole dataset is roughly 10%, of which over 90% were
caught by real-time QC embedded in the piTEAM pipeline and the
remainder during post-processing or segmentation. The nondes-
tructive nature of ssTEM and very cautious design of R2R
GridStage allow us to reimage bad montages. We reimage the

whole section, instead of targeting just specific tiles, as this facilitates
the downstream stitching and alignment. This reimaging based on
real-time QC was processed by batch, taking advantage of reliable
random access to requested barcode, and was completed during the
6-month data collection period.
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Fig. 4 Imaging of a cubic millimeter of mouse cortex with piTEAM. a Scaling from 0.003mm3 to 1 mm3, a 300-fold volume increase; b High-resolution
electron microscopy image tile from the 1 mm3 dataset with neuronal somata highlighted in yellow and glia in green (scale bar 5 µm). c Zoomed-in area
from (b) showing synapse with dendritic spine (scale bar 1 µm); d Zoomed-in area from (b) showing synapse with dendritic shaft (scale bar 1 µm); e Low-
mag EM image of an aperture with an ROI highlighted; 2D stacked montage minimap and aligned 3D volume. f Distribution of montage acquisition rate
(frames per second) achieved during 1 mm3 production. The plots represent a sample size of over 1000 sections imaged by 20 Mpixel and 50 Mpixel
cameras each. g Example of stage step-and-settle time distribution for GridStage.
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Discussion
The autoTEM/piTEAM imaging acquisition pipeline was
designed to maximize imaging speed, robustness for imaging
large datasets, scalability, and flexibility, while preserving easy
upgradeability. Our current imaging pipeline uses 50 MPixel
CMOS sensors (Fig. 5) that provide a large FOV per tile. The
transition from 20 Mpixel cameras reduced the collection time for
each 1 mm2 montage from 40min to 15 min (Table 1). We have
simulated montage acquisition with the upcoming 100+ Mpixel
CMOS sensors from major camera manufacturers (Fig. 5c) and
estimated that the current imaging software and computing
hardware could achieve a further 3× increase in speed (projected
imaging metric in Supplementary Table 1). It is important to note
that the performance described above was evaluated in a pro-
duction setting where roughly one hundred million images were
collected. In a research and development setting we have also
tested several upgrades described below that provide either a

more compact design or further increases in imaging speed and
scalability.

The early TEMCA systems7 have an extended vacuum column
to enlarge the final projected image. This increases the total
height of the electron microscope from 2.4 m to 4.6 m, which is
impractical for most facilities. We have experimented with an
AMT ActiveVu lens assembly (CB500M-AV) that achieves the
same magnification without the requirement of extending the
height of the TEM. The lens we tested uses the XIMEA camera
described above, so it was easy to integrate with our software. A
High-resolution image taken by AMT lens and XIMEA 50Mpix
camera is shown in Supplementary Fig. 10. In addition, the AMT
integrated lens system is adaptable to future larger sensors to
meet the requirement for scaling and serves as a good choice for
the next generation column extension. Both new cameras and
AMT integrated lens systems are drop-in replacements for our
current autoTEMs.

Table 1 Performance metric during 1 mm3 production for 20 MP and 50 MP cameras.

Imaging parameters Avg. production 20Mpixel Avg. production 50Mpixel 50Mpixel peak Unit

Frame size (pix) 3840 5408 5504 Aspect ratio of 1:1
Resolution 3.95–4 3.95–4 4 nm/pixel
Tile overlap 13 9 9 %
Net imaging rate 3.2–3.5 3.2–3.5 4.0 Hz
FOV per side 15 21 22 µm
AOV 225 468 484 µm2

Pixels per image 14.7 29.2 30.3 Mpixel
Time per section 30–40 15–25 ~14 Minute
Tiles w/overlap 5100 2916 2600 Per section
Sections per week (24/7) ~300 ~490 ~700 Section per week
Time to image volume with one scope
@65% uptime

900 525 450 Day

Time to image volume with five scopes
@65% uptime

180 105 90 Day

Completion of project in months @65% w/5 scopes ~6 ~3.5 ~3 Month

An estimation of mean 65% uptime takes into account the downtime from microscope maintenance, barcode reading errors, and imaging pause determined by real-time QC.

Imaging rate roadmap for 1 mm2 montage per scope

40 min

Single scope using
20 Mpix camera

“Cricket” sub-beam
scanner

Multiple scope parallel
imaging using 50 Mpix
Camera

100+ Mpix camera with
backside illumination.
Compatible with AMT
integrated column extension.

a

b

c

d

15 min

5 min

2.5 min

-Scan-

-Descan-

Sample

Image

Fig. 5 Imaging rate scaling roadmap. a 1st generation platform using 20 Mpixel XIMEA camera; b 2nd generation platform with 50 Mpixel XIMEA camera
(currently our platform contains six systems for parallel imaging); c AMT integrated column extension that can be combined with future commercial 100+
Mpix camera with back side illumination; d An example of Cricket which is a synchronous image sub-scanner and beam blanker. The inset is a 3 ×
3 supertile acquired by Cricket sub-beam scanner. The electron beam is raster scanned to allow large fields of view to be quickly imaged.
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Step-and-settle time of a sample stage consumes a large per-
centage of total image acquisition time per frame as the exposure
time of the imaging system is reduced. The GridStage running in
autoTEM consumes over 100 ms for a move to complete and
trigger camera exposure. Such stage latency issues can be miti-
gated by using a hybrid mode that couples stage scanning with
beam scanning and takes advantage of fast deflection of the
electron beam, whose response time is measured in nanoseconds.
We have tested a novel beam-deflecting device (Voxa’s Crick-
etTM) that raster scans the electron beam to allow imaging
multiple fields of view without moving a sample stage (Fig. 5d).
This approach provides a wider field-of-view and decreased
overhead. The beam sub-scanning system deflects the electron
beam around the sample in a matrix pattern (3 × 3), while
scanning coils below the object plane de-scan the image onto the
TEM camera. The sub-tiles obtained using this supertiling tech-
nique are acquired and stitched together to form a large com-
posite image, in effect creating a virtual camera of larger size
through electron-optics and computation. A 16 Mpixel image
acquired at one position can, for example, be expanded to 120
Mpixel at that same stage position using a 3 × 3 supertile, thus
drastically expanding FOV while eliminating 8 out of 9 stage
movements.

We also paid attention to the affordability of any single
machine, which was a primary concern about the original
TEMCA systems7,14,22. Based on our design, if there is already an
available TEM, a system that can achieve net imaging rates of at
least 100 Mpixel per sec can be built with additional components
that cost roughly $125,000. If a microscope is not available,
refurbished systems can be modified as long as they come with
ports for installing reel systems. For example, we purchased JEOL
1200EX-II for ~$125,000. This 1980s era microscope provides
robust hardware and is abundant in the resale market. Such
engineering approach makes a single autoTEM more affordable
than other options for high-throughput EM and requires much
less expensive facilities.

Finally, we are developing a suite of software modules to per-
form real-time lens correction and 2D montaging using the
template matching results collected through image QC. This
allows us to perform the 2D stitching of complete sections during
acquisition using the graphics card of the acquisition computer
and significantly save computation storage and time to do the
image processing afterwards. We can also monitor the change in
lens distortion over time and receive immediate quantitative
feedback on the quality of images and stitched visualization. We
are in the process of collecting a new volume dataset and com-
paring the performance with the existing post-imaging feature
matching pipeline.

EM connectomics has seen remarkable advances in the last 10
years, making it poised to examine synaptic connectivity of
neuronal networks at a very large scale. For this to happen, we
took an industrialized approach to build an image acquisition
pipeline, piTEAM. The entire EM imaging pipeline from sample
transfer, image acquisition, and image QC is a continuous auto-
mated process. Constant feedback from all stages of the pipeline
ensures data integrity and quality is maximized with minimal
need for manual intervention. The transition from a prototype to
an industrialized production pipeline was the most challenging
problem. To facilitate this effort, we put a strong emphasis on
standardization and consistency at every step of the pipeline,
resulting in a suite of methods that are open and affordable.

The piTEAM approach allows for further increases in speed,
both per microscope—by using increasingly large and fast cam-
eras or with beam deflection, and per facility—by increasing the
number of microscopes. In 2018, we used our six-microscope
piTEAM platform to collect 2 PB of EM images of 1 mm3 mouse

visual cortex at synaptic resolution over the course of 6 months.
We anticipate the net average rate of a single microscope to
increase from the 100 Mpixel per sec to 500 Mpixel per sec,
through a combination of larger sensors and the beam-scanning.
At this rate, a single microscope should be able to image a cubic
millimeter in roughly 100 days. This throughput at the cubic
millimeter range makes piTEAM ideal to investigate microcircuits
across species, cortical regions in health and disease, in a fra-
mework that focuses on production of brain maps at large scale.
Although this pipeline was designed for connectomics, any other
field requiring automated serial-section imaging at the ultra-
structural level can take advantage of the automation, high
throughput, and affordability of the methods described in this
manuscript. Our approach to TEM imaging can be used either as
a single autoTEM or as a full piTEAM pipeline for distributed
imaging that can be implemented both within a large dedicated
facility like our own as well as distributed over a community of
individual laboratories.

Methods
Tissue preparation and initial experimental setup. All procedures were carried
out in accordance with the Institutional Animal Care and Use Committee at the
Allen Institute for Brain Science. All mice were housed in individually ventilated
cages, 20–26 C, 30–70% Relative Humidity, with a 12 h light/dark cycle. Mice
(CamK2a-tTA/CamK2-Cre/Ai93, CamKII-tTA/tetO-GCaMP6s, Slc-Cre/
GCaMP6s) were transcardially perfused with a fixative mixture of 2.5% paraf-
ormaldehyde and 1.25% glutaraldehyde. After dissection, slices were cut with a
vibratome and post-fixed for 12–48 h. Slices were extensively washed and prepared
for reduced osmium treatment (rOTO) based on the protocol of Hua et al.37

Ferricyanide was used to reduce Osmium and Thiocarbohydrazide (TCH) for
further intensification of the staining. Uranyl acetate and lead aspartate were used
to enhance contrast. After resin embedding, ultrathin sections (40 nm) were either
manually cut in a Leica ultra-microtome or automatically onto GridTape using an
RMC Automated Tape Collecting Ultramicrotome. The sectioning of 1 mm3

volume usually takes about 1 week. After sectioning, the samples are loaded into
the autoTEM (~2 h.), and the microscope pumped down to achieve the vacuum
level of 1E-7 Torr. The pump-down time depends on the number of sections being
loaded onto the microscopes. For the large reels containing 5500 sections, this
process can take up to 24 h. After vacuum is reached, we follow normal TEM
operation routine to bring up the HT voltage and filament current and then align
the beam. Calibration of the autoTEM involves tape and tension calibration for
barcode reading, measuring beam rotation and camera pixels, and stage alignment.
After which, imaging can start. These calibration procedures cost roughly a day,
but are only required when changing the tape or filament.

VOXA gridstage sprite. The Voxa GridStage Sprite is used with sections collected
on to metal grids. A 3D rendering is shown in Supplementary Fig. 1a. The stage
combines two linear piezo stages to have x and y translation. The axes of the stage
have a scan resolution of ~1 nm with repeatability of ~50 nm. The system was
designed to translate Grid Sticks, which are cartridges that can hold up to
16 standard 3 mm TEM grids. Since Grid Sticks are much larger and more robust
than individual TEM grids, sample handling errors were reduced while increasing
the load density. An additional advantage is that Grid Sticks are a storage medium
for standard sample grids, allowing for easy indexing when archiving thousands of
sample grids.

autoTEM column extension. The autoTEM column extension continues the
vacuum column of the microscope and is terminated with a custom scintillator
coated with P43 phosphor, followed by a custom leaded glass window that blocks
X-rays from escaping through the bottom of the column. The rest of the column
extension is encased in lead shielding panels to block X-rays around the column.
Below the column is a custom camera housing with a single camera (XIMEA
CMOSIS CMV20000 or CMV50000) that images the scintillator screen. The PCI-E
interface offered by the CMOSIS camera also provided sufficiently fast data transfer
rates to enable on-the-fly GPU-based image processing and quality control.

TAO database and automatic ROI generation. Given that tissue sections can
number in the tens of thousands for large-scale datasets, mapping tissue ROI
becomes a labor-intensive task and requires an automation process as well.
Therefore, TAOs (TEM Acquisition Objects) define the ROI to be imaged for each
aperture and are automatically created from the optical images captured from the
ATUM system during sectioning. TAOs are uploaded to a cloud database upon
creation. This allows users to create a highly standardized datasets and to swap
sections across microscopes without the need for manual calibration, ROI setup,
and validation.
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We have also developed automated scripts to create tissue ROIs. The tissue area
on each aperture can be detected automatically from optical sectioning images
(Supplementary Fig. 6). Based on pre-defined rules of absolute distance to the
tissue corner along with tissue compression scaling factors, we achieved ~97%
success rate of placing correct ROI’s. Once data are uploaded to cloud database, it is
immediately available for use in TEM imaging or QC analysis. We have verified
through 2D montage that the ROI placement is sufficiently precise using this
method.

The present automatic ROI generation sequence per aperture is as follows: (1)
extract the barcode, (2) threshold the image to find the aperture candidates, (3)
select the largest aperture candidate, which is nearest the centerline of the optical
image, (4) from the aperture extract the centroid and bounding box, (5) find the
tissue area using HSV color segmentation over a range of colors, (6) filter out noise
in the tissue area by removing small interior blobs and trimming small outer
tendrils, (7) reject tissue candidates which don’t meet a minimum size criteria and
extract the centroid of the tissue area, (8) optionally create a fixed size ROI at the
tissue centroid, (9) insert all extracted data in to the TAO, and upload the original
image using the specimen_id, media_id, and barcode as keys for retrieval. If
suitable tissue cannot be automatically located, an empty TAO placeholder is
created and uploaded for eventual manual ROI definition.

In addition to the automatic ROI generation described above, pyTEM GUI is
also a multi-resolution, web-based CAD system for manual ROI definition and
editing at different EM magnifications or on optical images (Supplementary Fig. 3).
Software can also automatically locate the ROI corners for users to refine ROI
placement, which may be required to correct for beam hysteresis when switching
magnifications. During montage runs, a user specifies a range of ROIs to image
using a format similar to Microsoft Word page print selection (1–8, 13, 783–799).

Camera calibration. The nature of an electron beam is dependent upon the
characteristics of the electron-generating filament and its alignment within the
system. Thus, after initial installation and whenever a TEM filament is changed, the
imaging subcomponents of the system need to be recalibrated. The most critical
features to tune are the pixel resolution (nm/pixel) and the angular beam rotation.
As part of the real-time QC module, the pixel calibration is done through template
matching. The image pixel displacements of a 3 × 3 grid of template located at the
center of the screen are measured for known stage displacements. The standard
deviation of each X or Y vector is less than one pixel and results are now highly
repeatable. Overall, this method ensures calibration consistency across multiple
autoTEM systems.

Aperture centroid finding. The coordinate system used to place ROIs on the
optical ATUM image assigns the aperture centroid as the (0, 0) reference point.
ROIs are then defined in physical distance units as X/Y offsets from this centroid
point along with a rotation angle. When an aperture is imaged in the montage
acquisition magnification (4 nm/pixel), the tape subsystem first positions the
aperture in the approximate center of the column. Next, the centroid of the
aperture is detected in stage coordinates using a binary search algorithm for the
light–dark transition point demarking each of the four aperture edges: top, bottom,
left, right. Each ROI is then translated to this stage coordinate centroid, and further
rotated by a magnification-specific beam rotation which is measured during the
calibration process.

Brightfield and darkfield correction. To compensate for camera, lens, and illu-
mination non-linearities, each montage image is corrected using previously
acquired brightfield and darkfield images. The darkfield corrects sensor per-pixel
dark current offsets and is acquired once per week, or whenever the camera gain is
altered. The brightfield (example in Supplementary Fig. 7) corrects illumination
gradients (which can change with electron beam drift), camera lens non-linearities,
and sensor per-pixel gain variations. A new brightfield is acquired for each
aperture.

The darkfield is acquired by averaging together 16 images with the EM beam
turned off. The brightfield is acquired over tissue with the electron beam on while
randomly moving the stage slowly across a 300 µm radius region, integrating light
from light and dark tissue regions. Sixteen such integrated images are averaged and
then scaled to create the brightfield.

For each montage image, a corrected image is created using the brightfield and
darkfield images on the GPU in floating point format:

corrected ¼ image� darkfieldð Þ= brightfield� darkfieldð Þ: ð1Þ

The corrected image is converted to 8 bpp and saved as a TIFF file.

Auto focus. Over the course of scaling montage area from hundreds of µm2 to
several mm2, the autofocus algorithm had to evolve to deal with a property of the
JEOL 1200EXII TEM where overall image intensity changes with focus value. The
current focus measurement is derived as follows (Supplementary Fig. 8): (1) from
the corrected 3840 × 3840 or 5408 × 5408 image, extract the center 2048 × 2048

pixels, (2) compute the log magnitude of the Discrete Fourier Transform (DFT):

log 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ReðDFTðIÞÞ2 þ ImðDFTðIÞÞ2
q

� �

ð2Þ
(3) create an image mask, which excludes lowest 6 frequency components and

high frequency components above 1600, (4) perform a polar to rectangular
transformation of the DFT components within the mask area, (5) find the average of
the components for each row, (6) sum the averages. Discarding the highest frequency
components (which are largely noise) makes the algorithm less susceptible to the
image intensity changes that happen with the change of focus. Determination of
optimal FFT frequency components was derived experimentally by comparing FFT
scores at different exposures and different frequency components.

Through the experiments from pilot datasets, we noticed that a single EM focus
point at the ROI centroid was not sufficient for a large 1 mm2 montage. We
sometimes failed to derive optimal focal point when a blood vessel or other void
existed at the ROI centroid; or when there was a sample height gradient across ROI
due to tissue section being placed toward the aperture edge. To improve the
autofocus algorithm, we now perform focus optimization at additional satellite
points distributed across the ROI, averaging the remaining measurement points to
create a reasonably optimal focus value for the whole montage.

Performance tuning (LaB6 filament, stage performance). To achieve the opti-
mal speed and quality of the image platform, we have also made improvements in
terms of electron source, camera lens, and stage performance. The electron source
for the autoTEM system is a critical component for long-term imaging experi-
ments. Traditionally the JEOL 1200EXII leverages both Tungsten hairpin style
filaments and Lanthanum hexaboride crystal (LaB6) as possible electron sources.
Tungsten filaments, although easier to operate, demonstrated poor stability for long
periods of time due to deterioration of the tungsten source, as well as a short life
span (~100 h). LaB6 filaments have a more stringent ultimate vacuum pressure but
have a much larger current density (higher electron flux per unit area), which
reduces exposure times for the capture camera as well as a much longer lifetime
(1000–2000 h). The average lifetime by using LaB6 filaments during production
imaging was about 1 month for continuous 24/7 operation. In addition, the
exposure time using the tungsten source was 100–150 ms as compared to 50–80 ms
using LaB6, with same camera, optical arrangement, and specimen.

Among the 300ms acquisition cycle for each tile, the stage step-and-settle time
from initializing the stage move to finishing the move and send the complete status
back to pyTEM is averaged at ~120ms, consuming almost half of the total cycle time.
Therefore, it is very important to optimize the stage performance parameters. We
focused on stage speed, acceleration, and dwell time to minimize stage settling time.
In general, we have found a linear correlation between stage acceleration and speed to
the cycle time: the larger the acceleration, the less the step-and-settle time; the higher
the speed, the less the step-and-settle time but it caps around 10mm s^−1. An
appropriate dwell time is also necessary, otherwise the random streaks of blurry tiles
appear on the montage, because of insufficient wait time for stage to settle for camera
exposure before the next move. Larger frame size also requires more dwell time
because of increasing step distance for each tile.

Software. The pyTEM system is comprised of Python modules, which orchestrate
automated acquisition. The software is built upon a state machine in which each
state represents an acquisition step. The TEM Graph, which is at the core of the
acquisition and real-time processing pipeline is written in in C++ using OpenCV
and mostly running on acquisition computer GPU. Analytics of the different
sensors composing the Multi System Monitoring were visualized with Grafana.

Image processing after acquisition. For all post-processing stitching, we used the
HHMI renderer framework (https://github.com/saalfeldlab/render10). This
approach does not write intermediate renderings to disk, instead calculates and
stores the transforms while maintaining the original raw data. We apply the fol-
lowing transformations to stitch tiles: (1) for lens distortions the tile images are
corrected by computing a nonlinear transformation38. The technique involves
computing point correspondences for each pair of images that overlap with each
other within a section. These point correspondences are utilized to find the geo-
metric transformations that would correct for the lens distortion effects; (2) The
above technique is also used to stitch the images that overlap with each other
within a section. The real-time QC from the imaging pipeline ensures a minimum
of 7% overlap from the neighboring tiles for downstream 2D stitching. The
advantage of such an approach is its capability to compute a variety of transfor-
mations that can produce a high-quality stitching. These transformations range
from a similarity transformation to a higher order polynomial transformation.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Electron microscopy data that supports the findings of this work are available on http://
www.microns-explorer.org and on https://github.com/AllenInstitute/piTEAM
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Code availability
We will share software, bill of materials, and hardware design drawings upon request.
Software will be shared under the Allen Institute Software License and Contribution
Agreement, subject to any applicable third-party licensing restrictions. Bill of materials
and hardware design will be shared under the Allen Institute Terms of Use: https://
alleninstitute.org/legal/terms-use/ and deposited on https://github.com/AllenInstitute/
piTEAM.
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