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A B S T R A C T

Recent studies suggest a potential link between the physical structure of mitochondria and neurodegenerative
diseases. With advances in Electron Microscopy techniques, it has become possible to visualize the boundary
and cristae structures of mitochondria in detail. Segmenting mitochondria from microscopy images remains
challenging due to image quality and complex morphology of mitochondria, including cristae and the other
subcellular structures. It is crucial to automatically segment mitochondria from images exhibiting different
mitochondrial boundary and crista characteristics to investigate the relationship between mitochondria and
diseases. In this paper, we present a software solution for mitochondrial segmentation using an automatic
validation scheme based on the general physical properties of mitochondria, highlighting boundaries in electron
microscopy tomography images and generating corresponding 3D meshes. These capabilities help researchers
conduct further investigations into mitochondrial morphology and explore its role in the mechanisms of
neurodegenerative diseases.
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. Motivation and significance

Mitochondria are organelles responsible for producing the chemical
nergy required for various biochemical reactions in the cell. The rela-
ionship between mitochondria and neurodegenerative diseases such as
lzheimer’s and Parkinson’s has become an area of increasing interest,
s understanding the causes of these diseases is of great importance [1–
]. For this reason, it is essential to study the physical structure of
itochondria.

Advances in electron microscopy imaging techniques have signif-
cantly impacted the investigation of subcellular structures. Among

∗ Corresponding author.
E-mail addresses: fst@cankaya.edu.tr (Faris Serdar Taşel), efeciftci@cankaya.edu.tr (Efe Çiftci).

1 https://library.ucsd.edu/dc/object/bb03438047
2 https://library.ucsd.edu/dc/object/bb82620133

these techniques, Serial Block-Face Scanning Electron Microscopy (SBF-
SEM), Transmission Electron Microscopy (TEM), Focused Ion Beam
Scanning Electron Microscopy (FIB-SEM) and Automated Tape-
collecting Ultramicrotome SEM (ATUM-SEM) are frequently used, of-
fering detailed imaging down to a few nanometers [8–10]. Such high-
resolution imaging allows for the observation of mitochondrial mem-
brane structures, including the boundary and internal regions.

Mitochondria can exist in distinct structural states, including the
condensed state, where the internal matrix is tightly packed with pro-
teins, resulting in a dense, blob-like appearance in electron microscopy
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Fig. 1. Sample mitochondria images taken from Cell Centered Database, (a) Accession number: 3864 and (b) Accession number: 54.

images1 (Fig. 1(a)). This state contrasts with the orthodox state, in
which the mitochondria exhibit a more relaxed configuration with
visible cristae structures. In order to enhance the visibility of the crista
arrangement, a preprocessing step known as heavy metal staining is
applied. This technique highlights the fine details of mitochondrial
structures, allowing for detailed examination and investigation [11].
Following these preparation steps, the crista structure must be scanned
at a resolution high enough to reveal its details2 (Fig. 1(b)).

In existing literature, various mitochondria segmentation methods
employing different modalities have been proposed [12–27]. These
methods have led to the development of tools for segmenting mito-
chondria and other subcellular structures. MitoSegNet 3 specializes in
segmenting 2D fluorescence microscopy images, offering precise delin-
eation of boundaries. Empanada4 is designed for 2D and 3D electron
microscopy datasets, enabling accurate segmentation within volumetric
datasets. Mitometer,5 a MATLAB-based tool, is capable of both seg-
mentation and tracking in fluorescence microscopy from time-lapse
images, providing valuable insights into the dynamic behavior of mi-
tochondria. For CryoET, another mitochondria segmentation tool6 that
utilizes deep learning for detailed mitochondrial segmentation has been
developed. Additionally, some other tools have been also developed for
the segmentation of subcellular structures. Micro-sam7 provides semi-
automatic segmentation of organelles through deep learning. ASEM8

focuses on segmenting subcellular structures in FIB-SEM datasets. These
tools generally utilize deep learning approaches and CNNs and require
ground truth data for training purposes.

MitoSeg is a tool developed for mitochondria detection and segmen-
tation based on the algorithm proposed in [9], which is designed to
work on datasets exhibiting clear cristae structures. This method en-
ables the segmentation of mitochondria from the Electron Microscopy
Tomography (EMT) images using preprocessed specimens mentioned
above by leveraging the general physical characteristics of mitochon-
dria without the need for a training phase. For MitoSeg to produce
results, a high-resolution intracellular image dataset composed of a set
of slices and the corresponding metadata (e.g., slice range and pixel
size) is required.

3 https://github.com/MitoSegNet/MitoS-segmentation-tool
4 https://empanada.readthedocs.io/en/latest/
5 https://github.com/aelefebv/Mitometer/
6 https://github.com/sanketx/mitochondria_segmentation
7 https://github.com/computational-cell-analytics/micro-sam
8 https://github.com/kirchhausenlab/incasem

2. Software description

MitoSeg is a command line utility that works with EMT images. It
reads through a set of EMT images and produces 2D image and 3D mesh
outputs in which the detected mitochondria boundaries are highlighted
(Fig. 4). It is developed in C++ and uses the following libraries to
operate:

• OpenCV4: OpenCV handles the fundamental image processing
tasks.

• Boost: The Boost library handles string manipulation and com-
mand line options.

• yaml-cpp: MitoSeg is developed with pre-tuned internal seg-
mentation settings, but it is also designed to allow the users to
override these settings via external sources without recompiling
MitoSeg. The YAML file format is chosen for its simple syntax
among many existing standard formats. The yaml-cpp library
provides easy-to-use programming capabilities for loading the
user-defined segmentation settings from these external files.

The libraries above are used for building the main CLI utility. Addi-
tionally, a graphical user interface has been developed with Python’s
Tkinter to provide a more user-friendly experience (Fig. 2).

2.1. Software architecture

The software runs in three separate phases, each containing multiple
substeps, as illustrated in Fig. 3. The following sections summarize each
phase.

2.1.1. Phase 1 - preprocessing, ridge detection, energy mapping, curve fitting
This phase handles the preprocessing of provided dataset images

and generates intermediate data required by the actual segmentation
process. Since EMT of mitochondria can be a set of reconstructed
images obtained from a preprocessed specimen, it may contain unsharp
borders, have a low-contrast intensity distribution, and some artifacts
involving extreme high and low-intensity levels. The first step of the
preprocessing defines a region of interest automatically (if the user
does not provide it) by cropping the image from the borders that do
not contain useful information. This is achieved by removing borders
in which the sum of squared Laplacian of pixel values are less than a
threshold. In the second step, an auto-contrast adjustment method [9]
is employed in order to remove the extremity in the image histogram
and normalize intensity values into 0 - 255. Then, the input images
are subsampled to 2 nm per pixel in the third step to facilitate the
2
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Fig. 2. MitoSeg Graphical User Interface.

Fig. 3. Flowchart of the algorithm.

parameter tuning. In the last step of the preprocessing, bilateral and
Gaussian filtering are applied to input images to emphasize membrane
structures while eliminating unwanted noise as depicted in Fig. 4(a).

The preprocessed images are then used in a Hessian matrix-based
ridge detection process [9] to locate membrane-like structures
(Fig. 4(b)). Note that membranes can be elongated, such as in the
periphery of the mitochondrion or relatively short curvy structures
(e.g., cristae) as shown in Fig. 1(b). In order to distinguish between
the two, an energy mapping process [9] is utilized on large and small
scales individually, which calculates the total strength of ridges sharing
the same direction, thus providing valuable information on membranes
such as curvature, strength, and orientation (Fig. 6(b)–6(c)). Then,
a curve fitting process that uses a parabolic arc model [9,28] is
employed to extract small and large-scale curve segments as illustrated
in Figs. 4(c) and 6(a). Experiments conducted in [9,28] show that
extracted curve segments in different scales are useful for locating the
boundary and internal structures of mitochondria.

2.1.2. Phase 2 - shape extraction, validation
In this phase, extracted curve segments are used to segment mito-

chondrial regions. First, seed points are located near curve segments
by implementing a modified Density-Based Spatial Clustering of Appli-
cations with Noise (DBSCAN) algorithm [9,29]. Then, seed points are
fed to a pseudo-3D balloon snake [9], which is a variant of an active
contour model. This model extracts potential closed regions bounded
by the mitochondrial membranes.

However, it is also possible to erroneously segment a region in a
different organelle (e.g., somewhere in the endoplasmic reticulum) due
to the initialization of the model outside of mitochondria. To overcome
this problem, a validation step is performed to filter out incorrect
segmentations. A validator function checks several properties of the
candidate segmentation, such as the average energy of the boundary
and internal region, area of the segmented region, discontinuity, curva-
ture, and signature of the contour. It should be noted that those criteria
have been formed by the general physical properties of mitochondria
3
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appearing in tomograms as discussed in [9]. All segmentations identi-
fied as valid by the validator function are conveyed to the next phase
Fig. 4(d)).

2.1.3. Phase 3 - postprocessing
In this phase, valid segmented regions are merged if they over-

lap as illustrated in Fig. 4(e). Finally, boundary points on segmented
nd merged regions are utilized to generate a 3D mesh as a final

product packed in IMOD and PLY file formats so that they can be
easily visualized and processed for further applications as shown in
Fig. 4(g)–4(h).

The algorithm outlined here is a simplified explanation. A more
etailed description of the algorithm, along with further discussion and
arious examples, can be found in [9].

2.2. Software functionalities

MitoSeg provides several functionalities that enhance the proposed
ool’s overall performance and usability, such as command line argu-
ents, additional algorithm settings, multi-threaded execution, and a
ocker environment for running MitoSeg on all major OS families. The
etails of each functionality are described below.

2.2.1. Mandatory and optional command line arguments
MitoSeg offers the users various command line options to alter the

segmentation process. These options are presented to the users in two
forms: mandatory and optional arguments. Below is an example of how
to use MitoSeg from the command line:

𝚖𝚒𝚝𝚘𝚜𝚎𝚐 −−𝚜𝚛𝚌 ∕𝚑𝚘𝚖𝚎∕𝚞𝚜𝚎𝚛∕𝚍𝚊𝚝𝚊 −−𝚍𝚜𝚝 ∕𝚑𝚘𝚖𝚎∕𝚞𝚜𝚎𝚛∕𝚘𝚞𝚝𝚙𝚞𝚝 ∖

−−𝚙𝚜𝚒𝚣𝚎 𝟸.𝟺 −−𝚣𝚛𝚊𝚗𝚐𝚎 𝟷𝟶𝟶 𝟸𝟶𝟶 ∖

−−𝚙𝚊𝚝𝚝𝚎𝚛𝚗 𝚍𝚊𝚝𝚊𝚜𝚎𝚝%𝟶𝟺𝚍.𝚝𝚒𝚏

The mandatory command line arguments are listed below:

• pattern: Filename pattern for each slice that can be iterated
with C-style formatting9 (e.g., --pattern mito%03d.tif can
expand into a range of files from mito000.tif to mito999.tif).

• psize: Pixel size in nm/px (e.g., --psize 2.1).
• zrange: Range of slice numbers to be processed (e.g., --zrange
40 80).

Following is the list of available command line options:

• src: Path of source images (e.g., --src /home/user/
Desktop/data). Images belonging to the same dataset in this
directory must follow the same naming pattern (e.g.,
slice0001.bmp to slice0200.bmp or mito1.tif to mito100.tif).
Source images will be looked for in the current working directory
if not specified.

• dst: Path of the directory where the intermediate and final output
files are stored (e.g., --dst /home/user/Desktop/output).
If not specified, outputs will be stored in the current working
directory.

• roi: The region of interest in the provided slices is specified
as (left, top, width and height), where left and top represent the
x- and y-coordinates of the top-left corner of the rectangular
region, respectively, and width and height denote the horizontal
and vertical extent of the region, respectively (e.g., --roi 100
150 600 800). If not specified, RoI will be calculated automati-
cally. Manually specifying the RoI can improve performance and
help produce better results by focusing on a specific area in a
high-resolution image set.

9 https://www.geeksforgeeks.org/format-specifiers-in-c/

• phase: By default, MitoSeg runs the previously explained phases
in succession. This option allows for individual running of only a
specified phase (e.g., --phase 2).

• valid: Specifies the threshold of the validator function between 0
and 1 (e.g., --valid 0.85). If not specified, it is set to 0.75,
which is recommended in [9]. In general, higher values cause
increased precision and decreased recall.

• thick: Sets the snake thickness (e.g., --thick 30). It can be set
to a value between 5 and 500 (inclusive) or to ‘‘full’’ (i.e., --
thick full) to use all slices specified by the zrange option.
It is set to 20 by default.

• cores: Number of CPU cores utilized simultaneously for parallel
processing (e.g., --cores 8). It is set to 1 by default.

• settings-file: Path to a YAML file to load custom settings instead
of using the predefined ones. If not specified, default settings will
be used. (e.g., --settings-file /home/user/Desktop/
settings.yaml)

2.2.2. Custom algorithm settings
In addition to the command line arguments and options listed

above, MitoSeg requires additional settings10 (e.g., threshold values and
iteration amounts) for fine-tuning the algorithm. MitoSeg ships with
the alternative settings discussed in [9] as three separate setting files.
It allows researchers to use the supplied settings or create additional
custom settings files by modifying the provided ones and then using
them via the settings-file option.

2.2.3. Phase selection
As explained previously, MitoSeg runs in three phases, each focus-

ing on a different segmentation stage. Each phase generates its own
intermediate output files, which are utilized by consequent phases.
If desired, only a specific phase can be executed to experiment with
different settings and observe intermediate results before moving on to
the next phase.

2.2.4. Multithreaded execution
Most modern computers are equipped with multiple CPU cores; in-

stead of using only a single core, MitoSeg can employ multiple threads
to parallelize the segmentation operations during the first and second
phases, thereby enhancing overall time performance. In the first phase,
since each slice can be processed independently, the parallelization is
realized on a slice-by-slice basis. In the second phase, multiple snake
outputs can be extracted independently; therefore, the parallelization
is performed on a snake-by-snake basis.

2.2.5. 3D mesh outputs for external tools
In the third phase, in addition to the final boundary images, MitoSeg

also exports the generated outputs as .ply and .mod files, which can
be displayed using 3D mesh viewers and editors (e.g., MeshLab11,
IMOD12).

2.2.6. MitoSeg as a Docker application
MitoSeg has been primarily developed and tested on GNU/Linux-

based operating systems. For researchers using other operating systems,
a suitable environment for MitoSeg can be set up using Docker13.
For this purpose, a Dockerfile for building MitoSeg, along with ex-
ecution scripts that manage runtime options and input/output files,
are provided along with the MitoSeg source code. The provided exe-
cution scripts docker-mitoseg.sh (for Linux/Mac) and docker-
mitoseg.cmd (for Microsoft Windows) include explanatory com-
ments to guide users in modifying the scripts according to their specific
requirements.

10 https://github.com/fstasel/mitoseg/wiki/Setting-file-description
11 https://www.meshlab.net/
12 https://bio3d.colorado.edu/imod/
13 https://www.docker.com/
4
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Fig. 4. Outputs. (a) Smoothed image, (b) ridge image, (c) extracted curves, (d) validated boundaries, (e) merged boundaries from slice 35, (f) merged boundaries from slice 55,
(g) final output (.ply file), (h) final output (.mod file).

Table 1
Memory usage and total duration for test execution.

Elapsed time Peak memory usage

Phase 1 Only 10.61 s 246.2 MB
Phase 2 Only 66.55 s 907.3 MB
Phase 3 Only 4.06 s 683.6 MB
All Phases 76.35 s 907.3 MB

3. Illustrative examples

For demonstration purposes, MitoSeg was used to identify mito-
chondria in the tomographically reconstructed form of gap18 dataset
(accession number: 8747) [11,30] from Cell Centered Database14. De-
tection and segmentation results for different datasets are presented
and discussed in [9].

The tests were conducted on a desktop PC running a 64-bit Ubuntu
22.04 GNU/Linux system with a 6-cores (12 threads) Intel Core i7-8700
CPU and 16 GB RAM. MitoSeg was executed on slices 35 through 74
(total: 40) of the aforementioned dataset with the psize option set to
2.2nm/px, while the rest of the options and settings were kept at their
default values. Each image in the dataset is a 350 × 600 PNG image,
with the total size of the selected slices being 7.0 MB.

The tests were repeated multiple times to observe the elapsed time
and memory usage for each phase individually (with the use of phase
option) and for all phases altogether. The results of these tests are
presented in Table 1.

Since the value of the model z-thickness parameter was kept at
its default of 20, the final output contains two layers of extracted
mitochondria boundaries: the first is from slices 35 to 54, and the
second is from slices 55 to 74. Fig. 4 shows intermediate outputs and
the extracted boundaries from sample slices together with the produced
.ply and .mod outputs as viewed in MeshLab and IMOD, respectively.

The effects of core utilization on execution time have also been
tested. For this demonstration, the total duration of each phase has
been recorded for the increasing number of CPU cores utilized. The
time performance of MitoSeg for the gap18 dataset (using the same
parameters as the previous experiment) is presented in Fig. 5(a). It is
observed that there is a significant decrease in the execution times for

14 https://library.ucsd.edu/dc/object/bb81936790

up to 6 cores in the first and second phases in which parallelization
operations are performed. Note that these results highly depend on
the number of mitochondria and the size of the dataset provided as
input. It achieved a 5.1x speed-up in terms of overall execution time by
utilizing all CPU cores compared to single-core execution, as illustrated
in Fig. 5(b).

The algorithm implemented in MitoSeg has been evaluated on
various TEM datasets with resolutions ranging from 1.1 to 2.4 nm using
diverse parameter settings. It achieved an average segmentation accu-
racy with Dice coefficients reaching up to 0.87 and a median symmetric
boundary error (MSBE) as low as 14 nm. The algorithm performance
in the presence of noise was also assessed using a phantom image,
showing that it can effectively segment mitochondrial boundaries with
a signal-to-noise ratio (SNR) of down to 0.8, corresponding to −0.97 dB.
Additional details can be found in Appendix A in [9].

4. Impact

In the modern medical field, there is growing interest in understand-
ing the connection between neurodegenerative diseases and mitochon-
drial structure. Several mitochondrial characteristics, including the
thickness of the inner and outer membranes, the structure and number
of cristae, the crista junctions, and the size of contact sites, have been
measured and suggested to influence mitochondrial function [11]. In
this context, MitoSeg plays a crucial role in distinguishing mitochon-
drial regions from non-mitochondrial ones, serving as a foundation for
methods aimed at studying the internal structure of mitochondria since
it is able to process non-condensed mitochondrial images. Additionally,
the curve-fitting technique employed by MitoSeg can be considered
to assist in analyzing crista structures [9]. The extracted small- and
large-scale curves resemble a rough segmentation of the boundary and
crista, respectively, as depicted in Fig. 6(a). Figs. 6(b) and 6(c) display
the energy mapping images, with dashed lines indicating the major
direction within each block.

MitoSeg is developed as a fully automated, user-friendly tool to
address the challenge above. Its features, listed in the software function-
alities section, make it highly flexible and increase MitoSeg’s usability.
The source code is openly available for researchers, including biologists
and computer scientists, who wish to use or modify the methods
implemented in MitoSeg.

MitoSeg is particularly important in generating datasets containing
isolated mitochondrial regions. Mitochondrial images often contain
5
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Fig. 5. Number of utilized CPU cores vs (a) time performance, (b) speed-up.

Fig. 6. (a) Large-scale (blue) and small-scale (red) curves extracted from a specified region in the 35th slice of the gap18 dataset; (b) high, and (c) low energy mapping images
for the highlighted green region.

other cellular structures, like the endoplasmic reticulum, in addition to
mitochondria. By eliminating these structures, MitoSeg aids in creating
new datasets that can be used in approaches requiring training, such
as CNNs, for the segmentation of mitochondrial internal structures and
exploring their links to diseases.

Since MitoSeg uses features from the general physical structure of
mitochondria in its segmentation method, the approach can be helpful
in developing new methods for the segmentation of images obtained
with new modalities as well as TEM/SBF-SEM imaging techniques
without the need for a training phase (and therefore a training dataset).
It is also possible to adapt MitoSeg to work with mitochondria im-
ages obtained via different preparation techniques (e.g., condensed
mitochondria images) by fine-tuning the parameters in the setting file.

The software integrates the careful implementation of sophisticated
methods. The algorithm that is used by MitoSeg and presented in [9]
has inspired various studies to date, including membrane segmenta-
tion [31] and segmentation using CNNs [26,32]. Furthermore, MitoSeg
has the potential to support future research in the identification and
segmentation of other intracellular structures.

5. Conclusions

In this paper, we have presented MitoSeg, a utility designed for
detecting and segmenting mitochondria boundaries in EMT images.
MitoSeg integrates preprocessing, ridge detection, energy mapping,
curve fitting, shape extraction, validation, and postprocessing into three
distinct phases. Through these steps, our evaluations demonstrate that
MitoSeg is capable of accurately detecting mitochondria, even when
applied to unprocessed raw datasets that suffer from low contrast,
oversampling, or noise.

MitoSeg also provides users with several options that enable the seg-
mentation process to be fine-tuned. In addition to generating 2D output
images, it can produce 3D mesh representations. The utility supports
multicore systems, thereby reducing execution time, and is accessible
across major operating systems through a Docker environment.

Tomographic images produced by TEM are typically characterized
by relatively low thickness along the 𝑧-axis compared to the 𝑥 and
𝑦 axes, making pseudo-3D segmentation approaches suitable for TEM
images. However, such approaches can introduce discontinuities be-
tween independently processed layers, as observed in Figs. 4(g) and
4(h). To address this issue, the segmentation process can be refined by
enhancing the balloon snake model to connect segmented mitochondria
contours on adjacent layers, followed by re-executing the fitting algo-
rithm. For other imaging modalities, such as SBF-SEM and cryo-EM,
fully 3D segmentation models can be directly employed.

Future enhancements of MitoSeg may include adapting the model
to GPU parallelization, given the suitability of the balloon snake model
for such optimizations.
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