SoftwareX 30 (2025) 102081

Contents lists available at ScienceDirect

SoftwareX

journal homepage: www.elsevier.com/locate/softx

Original software publication

MitoSeg: Mitochondria segmentation tool

Faris Serdar Tasel ", Efe Ciftci®

2 Department of Computer Engineering, Cankaya University, Ankara, Turkey
b Computer Programming Program, Gankaya University, Ankara, Turkey

ARTICLE INFO ABSTRACT

Keywords: Recent studies suggest a potential link between the physical structure of mitochondria and neurodegenerative
Electron tomography diseases. With advances in Electron Microscopy techniques, it has become possible to visualize the boundary
Mitochondrion and cristae structures of mitochondria in detail. Segmenting mitochondria from microscopy images remains
Segmentation

challenging due to image quality and complex morphology of mitochondria, including cristae and the other
subcellular structures. It is crucial to automatically segment mitochondria from images exhibiting different
mitochondrial boundary and crista characteristics to investigate the relationship between mitochondria and
diseases. In this paper, we present a software solution for mitochondrial segmentation using an automatic
validation scheme based on the general physical properties of mitochondria, highlighting boundaries in electron
microscopy tomography images and generating corresponding 3D meshes. These capabilities help researchers
conduct further investigations into mitochondrial morphology and explore its role in the mechanisms of
neurodegenerative diseases.

Code metadata

Current code version v1.0
Permanent link to code/repository used for this code version https://github.com/ElsevierSoftwareX/SOFTX-D-24-00483
Permanent link to Reproducible Capsule https://github.com/fstasel/mitoseg/tree/master/docker
Legal Code License GPLv3
Code versioning system used git
Software code languages, tools, and services used C++, Python, CMake, Docker
Compilation requirements, operating environments & dependencies A modern GNU/Linux system with development files for OpenCV, Boost, and
yaml-cpp libraries installed. python3-tk is optional for GUL
If available Link to developer documentation/manual https://github.com/fstasel /mitoseg#readme
Support email for questions fst@cankaya.edu.tr
1. Motivation and significance these techniques, Serial Block-Face Scanning Electron Microscopy (SBF-
SEM), Transmission Electron Microscopy (TEM), Focused Ion Beam
Mitochondria are organelles responsible for producing the chemical Scanning Electron Microscopy (FIB-SEM) and Automated Tape-
energy required for various biochemical reactions in the cell. The rela- collecting Ultramicrotome SEM (ATUM-SEM) are frequently used, of-
tionship between mitochondria and neurodegenerative diseases such as fering detailed imaging down to a few nanometers [8-10]. Such high-

Alzheimer’s and Parkinson’s has become an area of increasing interest,
as understanding the causes of these diseases is of great importance [1—
7]. For this reason, it is essential to study the physical structure of
mitochondria.

Advances in electron microscopy imaging techniques have signif-
icantly impacted the investigation of subcellular structures. Among

resolution imaging allows for the observation of mitochondrial mem-
brane structures, including the boundary and internal regions.
Mitochondria can exist in distinct structural states, including the
condensed state, where the internal matrix is tightly packed with pro-
teins, resulting in a dense, blob-like appearance in electron microscopy

* Corresponding author.

E-mail addresses: fst@cankaya.edu.tr (Faris Serdar Tasel), efeciftci@cankaya.edu.tr (Efe Ciftci).
1 https://library.ucsd.edu/dc/object/bb03438047
2 https://library.ucsd.edu/dc/object/bb82620133

https://doi.org/10.1016/j.softx.2025.102081

Received 9 September 2024; Received in revised form 19 January 2025; Accepted 30 January 2025

Available online 9 February 2025

2352-7110/© 2025 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/softx
https://www.elsevier.com/locate/softx
https://github.com/ElsevierSoftwareX/SOFTX-D-24-00483
https://github.com/fstasel/mitoseg/tree/master/docker
https://github.com/fstasel/mitoseg#readme
mailto:fst@cankaya.edu.tr
mailto:fst@cankaya.edu.tr
mailto:efeciftci@cankaya.edu.tr
https://library.ucsd.edu/dc/object/bb03438047
https://library.ucsd.edu/dc/object/bb82620133
https://doi.org/10.1016/j.softx.2025.102081
https://doi.org/10.1016/j.softx.2025.102081
http://creativecommons.org/licenses/by/4.0/

Faris Serdar Tagel and Efe Ciftci

(@)

SoftwareX 30 (2025) 102081

S,

D LR b 9, gl

(b)

Fig. 1. Sample mitochondria images taken from Cell Centered Database, (a) Accession number: 3864 and (b) Accession number: 54.

images! (Fig. 1(a)). This state contrasts with the orthodox state, in
which the mitochondria exhibit a more relaxed configuration with
visible cristae structures. In order to enhance the visibility of the crista
arrangement, a preprocessing step known as heavy metal staining is
applied. This technique highlights the fine details of mitochondrial
structures, allowing for detailed examination and investigation [11].
Following these preparation steps, the crista structure must be scanned
at a resolution high enough to reveal its details? (Fig. 1(b)).

In existing literature, various mitochondria segmentation methods
employing different modalities have been proposed [12-27]. These
methods have led to the development of tools for segmenting mito-
chondria and other subcellular structures. MitoSegNet® specializes in
segmenting 2D fluorescence microscopy images, offering precise delin-
eation of boundaries. Empanada* is designed for 2D and 3D electron
microscopy datasets, enabling accurate segmentation within volumetric
datasets. Mitometer,” a MATLAB-based tool, is capable of both seg-
mentation and tracking in fluorescence microscopy from time-lapse
images, providing valuable insights into the dynamic behavior of mi-
tochondria. For CryoET, another mitochondria segmentation tool® that
utilizes deep learning for detailed mitochondrial segmentation has been
developed. Additionally, some other tools have been also developed for
the segmentation of subcellular structures. Micro-sam’ provides semi-
automatic segmentation of organelles through deep learning. ASEM®
focuses on segmenting subcellular structures in FIB-SEM datasets. These
tools generally utilize deep learning approaches and CNNs and require
ground truth data for training purposes.

MitoSeg is a tool developed for mitochondria detection and segmen-
tation based on the algorithm proposed in [9], which is designed to
work on datasets exhibiting clear cristae structures. This method en-
ables the segmentation of mitochondria from the Electron Microscopy
Tomography (EMT) images using preprocessed specimens mentioned
above by leveraging the general physical characteristics of mitochon-
dria without the need for a training phase. For MitoSeg to produce
results, a high-resolution intracellular image dataset composed of a set
of slices and the corresponding metadata (e.g., slice range and pixel
size) is required.

3 https://github.com/MitoSegNet/MitoS-segmentation-tool

4 https://empanada.readthedocs.io/en/latest/

5 https://github.com/aelefebv/Mitometer/

® https://github.com/sanketx/mitochondria_segmentation

7 https://github.com/computational-cell-analytics/micro-sam
8 https://github.com/kirchhausenlab/incasem

2. Software description

MitoSeg is a command line utility that works with EMT images. It
reads through a set of EMT images and produces 2D image and 3D mesh
outputs in which the detected mitochondria boundaries are highlighted
(Fig. 4). It is developed in C++ and uses the following libraries to
operate:

» OpenCV4: OpenCV handles the fundamental image processing
tasks.

Boost: The Boost library handles string manipulation and com-
mand line options.

yaml-cpp: MitoSeg is developed with pre-tuned internal seg-
mentation settings, but it is also designed to allow the users to
override these settings via external sources without recompiling
MitoSeg. The YAML file format is chosen for its simple syntax
among many existing standard formats. The yaml-cpp library
provides easy-to-use programming capabilities for loading the
user-defined segmentation settings from these external files.

The libraries above are used for building the main CLI utility. Addi-
tionally, a graphical user interface has been developed with Python’s
Tkinter to provide a more user-friendly experience (Fig. 2).

2.1. Software architecture

The software runs in three separate phases, each containing multiple
substeps, as illustrated in Fig. 3. The following sections summarize each
phase.

2.1.1. Phase 1 - preprocessing, ridge detection, energy mapping, curve fitting

This phase handles the preprocessing of provided dataset images
and generates intermediate data required by the actual segmentation
process. Since EMT of mitochondria can be a set of reconstructed
images obtained from a preprocessed specimen, it may contain unsharp
borders, have a low-contrast intensity distribution, and some artifacts
involving extreme high and low-intensity levels. The first step of the
preprocessing defines a region of interest automatically (if the user
does not provide it) by cropping the image from the borders that do
not contain useful information. This is achieved by removing borders
in which the sum of squared Laplacian of pixel values are less than a
threshold. In the second step, an auto-contrast adjustment method [9]
is employed in order to remove the extremity in the image histogram
and normalize intensity values into O - 255. Then, the input images
are subsampled to 2 nm per pixel in the third step to facilitate the

https://github.com/MitoSegNet/MitoS-segmentation-tool
https://empanada.readthedocs.io/en/latest/
https://github.com/aelefebv/Mitometer/
https://github.com/sanketx/mitochondria_segmentation
https://github.com/computational-cell-analytics/micro-sam
https://github.com/kirchhausenlab/incasem

Faris Serdar Tagel and Efe Ciftci

SoftwareX 30 (2025) 102081

rMandatory Settings—————————————————— ~Optional Settings
Z-range start: 35 Source path: data/src Browse...
Z-range end: ‘74 SEs
Destination path: data/output Browse...
Pixel size (px/nm): [21
Validity threshold: [0.75
Filename pattern: [gam 8_sub%04d.png
snake z-thickness: 20 I Full zrange
[Region of Interest
g Phase: [an]
* Auto " Manual
CPU cores: e £
x: [
Settings file: [settings-presetlyaml Browse...
Y:
Width: | Method
* Native * Docker ‘
Height: |
Output:

Saving: /home/mitoseg/Desktop/data/output/12

>>>> Completed!

Saving: /home/mitoseg/Desktop/data/output/12_mitos_merged_gap18_sub@@71.png
Saving: /home/mitoseg/Desktop/data/output/12_mitos_merged_gap18_sub8073.png
saving: /home/mitoseg/Desktop/data/output/12_mitos_merged_gap18_sub8074.png
Saving: /home/mitoseg/Desktop/data/output/poly_gap18_sub®035.png.ply
Loading: /home/mitoseg/Desktop/data/src/gap18_sub@®035.png

Saving: /home/mitoseg/Desktop/data/output/imod_gap18_sub®®35.png.mod

merged_gap18_sub0072.png

Fig. 2. MitoSeg Graphical User Interface.

Preprocessing Ridge Detection Energy Mapping Curve Fitting
Read Images
Auto Rol Detection Hessian-based Ridge Extraction
Auto Contrast Adjustment >» Compute Ridge Strength and Small/ Large Scale Energy Small / Large S_cale Curve
: R Mapping Extraction
Subsampling Direction
Noise Removal
Phase 1
Shape Extraction Validation
Lyl Seed Point Extraction Extract Shape Features
Balloon Snake Fitting Algorithm Compute Validity Score
Phase 2

Postprocessing

Merge Snakes

2D / 3D Output Generation

Fig. 3. Flowchart of the algorithm.

parameter tuning. In the last step of the preprocessing, bilateral and
Gaussian filtering are applied to input images to emphasize membrane
structures while eliminating unwanted noise as depicted in Fig. 4(a).

The preprocessed images are then used in a Hessian matrix-based
ridge detection process [9] to locate membrane-like structures
(Fig. 4(b)). Note that membranes can be elongated, such as in the
periphery of the mitochondrion or relatively short curvy structures
(e.g., cristae) as shown in Fig. 1(b). In order to distinguish between
the two, an energy mapping process [9] is utilized on large and small
scales individually, which calculates the total strength of ridges sharing
the same direction, thus providing valuable information on membranes
such as curvature, strength, and orientation (Fig. 6(b)-6(c)). Then,
a curve fitting process that uses a parabolic arc model [9,28] is
employed to extract small and large-scale curve segments as illustrated
in Figs. 4(c) and 6(a). Experiments conducted in [9,28] show that
extracted curve segments in different scales are useful for locating the
boundary and internal structures of mitochondria.

2.1.2. Phase 2 - shape extraction, validation

In this phase, extracted curve segments are used to segment mito-
chondrial regions. First, seed points are located near curve segments
by implementing a modified Density-Based Spatial Clustering of Appli-
cations with Noise (DBSCAN) algorithm [9,29]. Then, seed points are
fed to a pseudo-3D balloon snake [9], which is a variant of an active
contour model. This model extracts potential closed regions bounded
by the mitochondrial membranes.

However, it is also possible to erroneously segment a region in a
different organelle (e.g., somewhere in the endoplasmic reticulum) due
to the initialization of the model outside of mitochondria. To overcome
this problem, a validation step is performed to filter out incorrect
segmentations. A validator function checks several properties of the
candidate segmentation, such as the average energy of the boundary
and internal region, area of the segmented region, discontinuity, curva-
ture, and signature of the contour. It should be noted that those criteria
have been formed by the general physical properties of mitochondria

Faris Serdar Tagsel and Efe Ciftci

appearing in tomograms as discussed in [9]. All segmentations identi-
fied as valid by the validator function are conveyed to the next phase
(Fig. 4(d)).

2.1.3. Phase 3 - postprocessing

In this phase, valid segmented regions are merged if they over-
lap as illustrated in Fig. 4(e). Finally, boundary points on segmented
and merged regions are utilized to generate a 3D mesh as a final
product packed in IMOD and PLY file formats so that they can be
easily visualized and processed for further applications as shown in
Fig. 4(g)-4(h).

The algorithm outlined here is a simplified explanation. A more
detailed description of the algorithm, along with further discussion and
various examples, can be found in [9].

2.2. Software functionalities

MitoSeg provides several functionalities that enhance the proposed
tool’s overall performance and usability, such as command line argu-
ments, additional algorithm settings, multi-threaded execution, and a
Docker environment for running MitoSeg on all major OS families. The
details of each functionality are described below.

2.2.1. Mandatory and optional command line arguments

MitoSeg offers the users various command line options to alter the
segmentation process. These options are presented to the users in two
forms: mandatory and optional arguments. Below is an example of how
to use MitoSeg from the command line:

mitoseg ——src /home/user/data ——dst /home/user/output \
——psize 2.4 ——zrange 100 200 \
——pattern dataset%04d.tif

The mandatory command line arguments are listed below:

+ pattern: Filename pattern for each slice that can be iterated
with C-style formatting® (e.g., ——pattern mito%03d.tif can
expand into a range of files from mito000.tif to mito999.tif).

« psize: Pixel size in nm/px (e.g., ——psize 2.1).

» zrange: Range of slice numbers to be processed (e.g., ——zrange
40 80).

Following is the list of available command line options:

+ src: Path of source images (e.g., ——src /home/user/
Desktop/data). Images belonging to the same dataset in this
directory must follow the same naming pattern (e.g.,
slice0001.bmp to slice0200.bmp or mitol.tif to mito100.tif).
Source images will be looked for in the current working directory
if not specified.

dst: Path of the directory where the intermediate and final output
files are stored (e.g., ——dst /home/user/Desktop/output).
If not specified, outputs will be stored in the current working
directory.

roi: The region of interest in the provided slices is specified
as (left, top, width and height), where left and top represent the
x- and y-coordinates of the top-left corner of the rectangular
region, respectively, and width and height denote the horizontal
and vertical extent of the region, respectively (e.g., ——roi 100
150 600 800). If not specified, Rol will be calculated automati-
cally. Manually specifying the Rol can improve performance and
help produce better results by focusing on a specific area in a
high-resolution image set.

9 https://www.geeksforgeeks.org/format-specifiers-in-c/

SoftwareX 30 (2025) 102081

 phase: By default, MitoSeg runs the previously explained phases
in succession. This option allows for individual running of only a
specified phase (e.g., ——phase 2).

valid: Specifies the threshold of the validator function between 0
and 1 (e.g., ——valid 0.85b). If not specified, it is set to 0.75,
which is recommended in [9]. In general, higher values cause
increased precision and decreased recall.

thick: Sets the snake thickness (e.g., ——thick 30). It can be set
to a value between 5 and 500 (inclusive) or to “full” (i.e., ——
thick full) to use all slices specified by the zrange option.
It is set to 20 by default.

cores: Number of CPU cores utilized simultaneously for parallel
processing (e.g., ——cores 8). It is set to 1 by default.
settings-file: Path to a YAML file to load custom settings instead
of using the predefined ones. If not specified, default settings will
be used. (e.g., ——settings-file /home/user/Desktop/
settings.yaml)

2.2.2. Custom algorithm settings

In addition to the command line arguments and options listed
above, MitoSeg requires additional settings'® (e.g., threshold values and
iteration amounts) for fine-tuning the algorithm. MitoSeg ships with
the alternative settings discussed in [9] as three separate setting files.
It allows researchers to use the supplied settings or create additional
custom settings files by modifying the provided ones and then using
them via the settings—-file option.

2.2.3. Phase selection

As explained previously, MitoSeg runs in three phases, each focus-
ing on a different segmentation stage. Each phase generates its own
intermediate output files, which are utilized by consequent phases.
If desired, only a specific phase can be executed to experiment with
different settings and observe intermediate results before moving on to
the next phase.

2.2.4. Multithreaded execution

Most modern computers are equipped with multiple CPU cores; in-
stead of using only a single core, MitoSeg can employ multiple threads
to parallelize the segmentation operations during the first and second
phases, thereby enhancing overall time performance. In the first phase,
since each slice can be processed independently, the parallelization is
realized on a slice-by-slice basis. In the second phase, multiple snake
outputs can be extracted independently; therefore, the parallelization
is performed on a snake-by-snake basis.

2.2.5. 3D mesh outputs for external tools

In the third phase, in addition to the final boundary images, MitoSeg
also exports the generated outputs as .ply and .mod files, which can
be displayed using 3D mesh viewers and editors (e.g., MeshLab'!,
IMOD'?).

2.2.6. MitoSeg as a Docker application

MitoSeg has been primarily developed and tested on GNU/Linux-
based operating systems. For researchers using other operating systems,
a suitable environment for MitoSeg can be set up using Docker'®.
For this purpose, a Dockerfile for building MitoSeg, along with ex-
ecution scripts that manage runtime options and input/output files,
are provided along with the MitoSeg source code. The provided exe-
cution scripts docker-mitoseg. sh (for Linux/Mac) and docker—
mitoseg.cmd (for Microsoft Windows) include explanatory com-
ments to guide users in modifying the scripts according to their specific
requirements.

-

0
1

https://github.com/fstasel/mitoseg/wiki/Setting-file-description
https://www.meshlab.net/

2 https://bio3d.colorado.edu/imod/

3 https://www.docker.com/

P I

https://www.geeksforgeeks.org/format-specifiers-in-c/
https://github.com/fstasel/mitoseg/wiki/Setting-file-description
https://www.meshlab.net/
https://bio3d.colorado.edu/imod/
https://www.docker.com/

Faris Serdar Tasel and Efe Ciftci

SoftwareX 30 (2025) 102081

Fig. 4. Outputs. (a) Smoothed image, (b) ridge image, (c) extracted curves, (d) validated boundaries, (¢) merged boundaries from slice 35, (f) merged boundaries from slice 55,

(g) final output (.ply file), (h) final output (.mod file).

Table 1
Memory usage and total duration for test execution.

Elapsed time Peak memory usage

Phase 1 Only 10.61 s 246.2 MB
Phase 2 Only 66.55 s 907.3 MB
Phase 3 Only 4.06 s 683.6 MB
All Phases 76.35 s 907.3 MB

3. Ilustrative examples

For demonstration purposes, MitoSeg was used to identify mito-
chondria in the tomographically reconstructed form of gap18 dataset
(accession number: 8747) [11,30] from Cell Centered Database'*. De-
tection and segmentation results for different datasets are presented
and discussed in [9].

The tests were conducted on a desktop PC running a 64-bit Ubuntu
22.04 GNU/Linux system with a 6-cores (12 threads) Intel Core i7-8700
CPU and 16 GB RAM. MitoSeg was executed on slices 35 through 74
(total: 40) of the aforementioned dataset with the psize option set to
2.2nm/px, while the rest of the options and settings were kept at their
default values. Each image in the dataset is a 350 x 600 PNG image,
with the total size of the selected slices being 7.0 MB.

The tests were repeated multiple times to observe the elapsed time
and memory usage for each phase individually (with the use of phase
option) and for all phases altogether. The results of these tests are
presented in Table 1.

Since the value of the model z-thickness parameter was kept at
its default of 20, the final output contains two layers of extracted
mitochondria boundaries: the first is from slices 35 to 54, and the
second is from slices 55 to 74. Fig. 4 shows intermediate outputs and
the extracted boundaries from sample slices together with the produced
.ply and .mod outputs as viewed in MeshLab and IMOD, respectively.

The effects of core utilization on execution time have also been
tested. For this demonstration, the total duration of each phase has
been recorded for the increasing number of CPU cores utilized. The
time performance of MitoSeg for the gapl8 dataset (using the same
parameters as the previous experiment) is presented in Fig. 5(a). It is
observed that there is a significant decrease in the execution times for

14 https://library.ucsd.edu/dc/object/bb81936790

up to 6 cores in the first and second phases in which parallelization
operations are performed. Note that these results highly depend on
the number of mitochondria and the size of the dataset provided as
input. It achieved a 5.1x speed-up in terms of overall execution time by
utilizing all CPU cores compared to single-core execution, as illustrated
in Fig. 5(b).

The algorithm implemented in MitoSeg has been evaluated on
various TEM datasets with resolutions ranging from 1.1 to 2.4 nm using
diverse parameter settings. It achieved an average segmentation accu-
racy with Dice coefficients reaching up to 0.87 and a median symmetric
boundary error (MSBE) as low as 14 nm. The algorithm performance
in the presence of noise was also assessed using a phantom image,
showing that it can effectively segment mitochondrial boundaries with
a signal-to-noise ratio (SNR) of down to 0.8, corresponding to —0.97 dB.
Additional details can be found in Appendix A in [9].

4. Impact

In the modern medical field, there is growing interest in understand-
ing the connection between neurodegenerative diseases and mitochon-
drial structure. Several mitochondrial characteristics, including the
thickness of the inner and outer membranes, the structure and number
of cristae, the crista junctions, and the size of contact sites, have been
measured and suggested to influence mitochondrial function [11]. In
this context, MitoSeg plays a crucial role in distinguishing mitochon-
drial regions from non-mitochondrial ones, serving as a foundation for
methods aimed at studying the internal structure of mitochondria since
it is able to process non-condensed mitochondrial images. Additionally,
the curve-fitting technique employed by MitoSeg can be considered
to assist in analyzing crista structures [9]. The extracted small- and
large-scale curves resemble a rough segmentation of the boundary and
crista, respectively, as depicted in Fig. 6(a). Figs. 6(b) and 6(c) display
the energy mapping images, with dashed lines indicating the major
direction within each block.

MitoSeg is developed as a fully automated, user-friendly tool to
address the challenge above. Its features, listed in the software function-
alities section, make it highly flexible and increase MitoSeg’s usability.
The source code is openly available for researchers, including biologists
and computer scientists, who wish to use or modify the methods
implemented in MitoSeg.

MitoSeg is particularly important in generating datasets containing
isolated mitochondrial regions. Mitochondrial images often contain

https://library.ucsd.edu/dc/object/bb81936790

Faris Serdar Tasel and Efe Ciftci

350

2 300

2

3 250

k3

< 200

}':E 150 -@- Phase 1
o -~ Phase 2
& 100 Phase 3
Q

o

i}

50_\"-_-—-_“

0
1 2 4 6 8 10 12

Number of CPU Cores

(a)

SoftwareX 30 (2025) 102081

Speed-up
o [N w £ [, o

1 2 4 6 8

Number of CPU Cores

(b)

10

Fig. 5. Number of utilized CPU cores vs (a) time performance, (b) speed-up.

(€

Fig. 6. (a) Large-scale (blue) and small-scale (red) curves extracted from a specified region in the 35th slice of the gap18 dataset; (b) high, and (c) low energy mapping images

for the highlighted green region.

other cellular structures, like the endoplasmic reticulum, in addition to
mitochondria. By eliminating these structures, MitoSeg aids in creating
new datasets that can be used in approaches requiring training, such
as CNNs, for the segmentation of mitochondrial internal structures and
exploring their links to diseases.

Since MitoSeg uses features from the general physical structure of
mitochondria in its segmentation method, the approach can be helpful
in developing new methods for the segmentation of images obtained
with new modalities as well as TEM/SBF-SEM imaging techniques
without the need for a training phase (and therefore a training dataset).
It is also possible to adapt MitoSeg to work with mitochondria im-
ages obtained via different preparation techniques (e.g., condensed
mitochondria images) by fine-tuning the parameters in the setting file.

The software integrates the careful implementation of sophisticated
methods. The algorithm that is used by MitoSeg and presented in [9]
has inspired various studies to date, including membrane segmenta-
tion [31] and segmentation using CNNs [26,32]. Furthermore, MitoSeg
has the potential to support future research in the identification and
segmentation of other intracellular structures.

5. Conclusions

In this paper, we have presented MitoSeg, a utility designed for
detecting and segmenting mitochondria boundaries in EMT images.
MitoSeg integrates preprocessing, ridge detection, energy mapping,
curve fitting, shape extraction, validation, and postprocessing into three
distinct phases. Through these steps, our evaluations demonstrate that
MitoSeg is capable of accurately detecting mitochondria, even when
applied to unprocessed raw datasets that suffer from low contrast,
oversampling, or noise.

MitoSeg also provides users with several options that enable the seg-
mentation process to be fine-tuned. In addition to generating 2D output
images, it can produce 3D mesh representations. The utility supports
multicore systems, thereby reducing execution time, and is accessible
across major operating systems through a Docker environment.

Tomographic images produced by TEM are typically characterized
by relatively low thickness along the z-axis compared to the x and
y axes, making pseudo-3D segmentation approaches suitable for TEM
images. However, such approaches can introduce discontinuities be-
tween independently processed layers, as observed in Figs. 4(g) and
4(h). To address this issue, the segmentation process can be refined by
enhancing the balloon snake model to connect segmented mitochondria
contours on adjacent layers, followed by re-executing the fitting algo-
rithm. For other imaging modalities, such as SBF-SEM and cryo-EM,
fully 3D segmentation models can be directly employed.

Future enhancements of MitoSeg may include adapting the model
to GPU parallelization, given the suitability of the balloon snake model
for such optimizations.

CRediT authorship contribution statement

Faris Serdar Tasel: Writing — review & editing, Writing — origi-
nal draft, Visualization, Software, Methodology, Conceptualization. Efe
Ciftci: Writing — review & editing, Writing — original draft, Visualiza-
tion, Validation, Software.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

The authors would like to express their gratitude to Erkan U.
Mumcuoglu, Reza Z. Hassanpour, and Guy Perkins for their support in
algorithm conceptualization, clarification of biological background and
significance, and for providing the datasets.

Faris Serdar Tagsel and Efe Ciftci

References

[1]

[2]

[3]

[4]

(5]

[6]

[7]

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Payne T, Burgess T, Bradley S, Roscoe S, Sassani M, Dunning MJ, et al.
Multimodal assessment of mitochondrial function in parkinson’s disease. Brain
2024;147(1):267-80. http://dx.doi.org/10.1093/brain/awad364.

Pradeepkiran JA, Baig J, Seman A, Reddy PH. Mitochondria in aging and
Alzheimer’s disease: focus on mitophagy. Neurosci 2024;30(4):440-57. http:
//dx.doi.org/10.1177/10738584221139761.

Reiss AB, Gulkarov S, Jacob B, Srivastava A, Pinkhasov A, Gomolin IH, et
al. Mitochondria in Alzheimer’s disease pathogenesis. Life 2024;14(2):196. http:
//dx.doi.org/10.3390/1ife14020196.

Borsche M, Pereira SL, Klein C, Griinewald A. Mitochondria and Parkin-
son’s disease: clinical, molecular, and translational aspects. J Parkinson’ s Dis
2021;11(1):45-60. http://dx.doi.org/10.3233/JPD-201981.

Malpartida AB, Williamson M, Narendra DP, Wade-Martins R, Ryan BJ. Mito-
chondrial dysfunction and mitophagy in Parkinson’s disease: from mechanism
to therapy. Trends Biochem Sci 2021;46(4):329-43. http://dx.doi.org/10.1016/
j-tibs.2020.11.007.

Monzio Compagnoni G, Di Fonzo A, Corti S, Comi GP, Bresolin N, Masliah E. The
role of mitochondria in neurodegenerative diseases: the lesson from Alzheimer’s
disease and Parkinson’s disease. Mol Neurobiol 2020;57:2959-80. http://dx.doi.
0rg/10.1007/s12035-020-01926-1.

Wang W, Zhao F, Ma X, Perry G, Zhu X. Mitochondria dysfunction in
the pathogenesis of Alzheimer’s disease: Recent advances. Mol Neurodegener
2020;15:1-22. http://dx.doi.org/10.1186/s13024-020-00376-6.

Xu CS, Hayworth KJ, Lu Z, Grob P, Hassan AM, Garcia-Cerdan JG, et al.
Enhanced FIB-SEM systems for large-volume 3D imaging. Elife 2017;6:e25916.
http://dx.doi.org/10.7554/eLife.25916.

Tasel SF, Mumcuoglu EU, Hassanpour RZ, Perkins G. A validated active contour
method driven by parabolic arc model for detection and segmentation of
mitochondria. J Struct Biol 2016;194(3):253-71. http://dx.doi.org/10.1016/j.jsb.
2016.03.002.

Titze B, Genoud C. Volume scanning electron microscopy for imaging biological
ultrastructure. Biol Cell 2016;108(11):307-23. http://dx.doi.org/10.1111/boc.
201600024.

Perkins GA, Ellisman MH, Fox DA. Three-dimensional analysis of mouse rod and
cone mitochondrial cristae architecture: bioenergetic and functional implications.
Mol Vis 2003;9:60-73.

Nesi¢ N, Heiligenstein X, Zopf L, Bliiml V, Keuenhof KS, Wagner M, et al.
Automated segmentation of cell organelles in volume electron microscopy using
deep learning. Microsc Res Tech 2024;87(8):1718-32. http://dx.doi.org/10.
1002/jemt.24548.

Luo N, Sun R, Pan Y, Zhang T, Wu F. Electron microscopy images as set
of fragments for mitochondrial segmentation. In: Proceedings of the AAAI
conference on artificial intelligence, Vol. 38, (4):2024, p. 3981-9. http://dx.doi.
org/10.1609/aaai.v38i4.28191.

Conrad R, Narayan K. Instance segmentation of mitochondria in electron mi-
croscopy images with a generalist deep learning model trained on a diverse
dataset. Cell Syst 2023;14(1):58-71. http://dx.doi.org/10.1016/j.cels.2022.12.
006.

Pan Y, Luo N, Sun R, Meng M, Zhang T, Xiong Z, et al. Adaptive template
transformer for mitochondria segmentation in electron microscopy images. In:
Proceedings of the IEEE/CVF international conference on computer vision. 2023,
P- 21474-84. http://dx.doi.org/10.1109/iccv51070.2023.01963.

Wu G-H, Smith-Geater C, Galaz-Montoya JG, Gu Y, Gupte SR, Aviner R, et al.
Cryoet reveals organelle phenotypes in huntington disease patient iPSC-derived
and mouse primary neurons. Nat Commun 2023;14(1):692. http://dx.doi.org/10.
1038/541467-023-36096-w.

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

SoftwareX 30 (2025) 102081

Franco-Barranco D, Pastor-Tronch J, Gonzélez-Marfil A, Muifioz-Barrutia A,
Arganda-Carreras I. Deep learning based domain adaptation for mitochon-
dria segmentation on EM volumes. Comput Methods Programs Biomed
2022;222:106949. http://dx.doi.org/10.1016/j.cmpb.2022.106949.
Franco-Barranco D, Muiioz-Barrutia A, Arganda-Carreras I. Stable deep neural
network architectures for mitochondria segmentation on electron microscopy vol-
umes. Neuroinformatics 2022;20(2):437-50. http://dx.doi.org/10.1007/s12021-
021-09556-1.

Gallusser B, Maltese G, Di Caprio G, Vadakkan TJ, Sanyal A, Somerville E, et al.
Deep neural network automated segmentation of cellular structures in volume
electron microscopy. J Cell Biol 2022;222(2):e202208005. http://dx.doi.org/10.
1083/jcb.202208005.

Li M, Chen C, Liu X, Huang W, Zhang Y, Xiong Z. Advanced deep networks
for 3D mitochondria instance segmentation. In: 2022 IEEE 19th international
symposium on biomedical imaging. IEEE; 2022, p. 1-5. http://dx.doi.org/10.
1109/1SBI52829.2022.9761477.

Somani A, Ahmed Sekh A, Opstad IS, Birna Birgisdottir A, Myrmel T,
Singh Ahluwalia B, et al. Virtual labeling of mitochondria in living cells using
correlative imaging and physics-guided deep learning. Biomed Opt Express
2022;13(10):5495-516. http://dx.doi.org/10.1364/BOE.464177.

Lefebvre AE, Ma D, Kessenbrock K, Lawson DA, Digman MA. Automated
segmentation and tracking of mitochondria in live-cell time-lapse images. Nature
Methods 2021;18(9):1091-102. http://dx.doi.org/10.1038/541592-021-01234-z.
Fischer CA, Besora-Casals L, Rolland SG, Haeussler S, Singh K, Duchen M, et
al. MitoSegNet: easy-to-use deep learning segmentation for analyzing mitochon-
drial morphology. Iscience 2020;23(10). http://dx.doi.org/10.1016/j.isci.2020.
101601.

Meku¢ MZ, Bohak C, Hudoklin S, Kim BH, Kim MY, Marolt M, et al. Automatic
segmentation of mitochondria and endolysosomes in volumetric electron mi-
croscopy data. Comput Biol Med 2020;119:103693. http://dx.doi.org/10.1016/
j.compbiomed.2020.103693.

Peng J, Yi J, Yuan Z. Unsupervised mitochondria segmentation in EM im-
ages via domain adaptive multi-task learning. IEEE J Sel Top Signal Process
2020;14(6):1199-209. http://dx.doi.org/10.1109/JSTSP.2020.3005317.

Xiao C, Chen X, Li W, Li L, Wang L, Xie Q, et al. Automatic mitochondria
segmentation for EM data using a 3D supervised convolutional network. Front
Neuroanat 2018;12:92. http://dx.doi.org/10.3389/fnana.2018.00092.

Lucchi A, Smith K, Achanta R, Knott G, Fua P. Supervoxel-based segmentation of
mitochondria in em image stacks with learned shape features. IEEE Trans Med
Imaging 2011;31(2):474-86. http://dx.doi.org/10.1109/TMI1.2011.2171705.
Tasel SF, Hassanpour R, Mumcuoglu EU, Perkins GC, Martone M. Automatic
detection of mitochondria from electron microscope tomography images: a curve
fitting approach. In: Medical imaging 2014: image processing, Vol. 9034, SPIE;
2014, p. 1116-23. http://dx.doi.org/10.1117/12.2043517.

Ester M, Kriegel H-P, Sander J, Xu X, et al. A density-based algorithm for
discovering clusters in large spatial databases with noise. In: Kdd, Vol. 96,
(34):1996, p. 226-31.

Fox D, Perkins GA. Microscopy product ID: 8747. In cell centered database.
2017, http://dx.doi.org/10.6075/J0SF2WOK, URL https://library.ucsd.edu/dc/
object/bb81936790.

Siggel M, Jensen RK, Maurer VJ, Mahamid J, Kosinski J. ColabSeg: An interactive
tool for editing, processing, and visualizing membrane segmentations from cryo-
ET data. J Struct Biol 2024;216(2):108067. http://dx.doi.org/10.1016/j.jsb.2024.
108067.

Xiao C, Li W, Chen X, Han H, Xie Q. An effective fully deep convolutional
neural networks for mitochondria segmentation based on ATUM-SEM. In: Medical
imaging 2018: image processing, Vol. 10574, SPIE; 2018, p. 65-70. http://dx.
doi.org/10.1117/12.2293291.

http://dx.doi.org/10.1093/brain/awad364
http://dx.doi.org/10.1177/10738584221139761
http://dx.doi.org/10.1177/10738584221139761
http://dx.doi.org/10.1177/10738584221139761
http://dx.doi.org/10.3390/life14020196
http://dx.doi.org/10.3390/life14020196
http://dx.doi.org/10.3390/life14020196
http://dx.doi.org/10.3233/JPD-201981
http://dx.doi.org/10.1016/j.tibs.2020.11.007
http://dx.doi.org/10.1016/j.tibs.2020.11.007
http://dx.doi.org/10.1016/j.tibs.2020.11.007
http://dx.doi.org/10.1007/s12035-020-01926-1
http://dx.doi.org/10.1007/s12035-020-01926-1
http://dx.doi.org/10.1007/s12035-020-01926-1
http://dx.doi.org/10.1186/s13024-020-00376-6
http://dx.doi.org/10.7554/eLife.25916
http://dx.doi.org/10.1016/j.jsb.2016.03.002
http://dx.doi.org/10.1016/j.jsb.2016.03.002
http://dx.doi.org/10.1016/j.jsb.2016.03.002
http://dx.doi.org/10.1111/boc.201600024
http://dx.doi.org/10.1111/boc.201600024
http://dx.doi.org/10.1111/boc.201600024
http://refhub.elsevier.com/S2352-7110(25)00048-2/sb11
http://refhub.elsevier.com/S2352-7110(25)00048-2/sb11
http://refhub.elsevier.com/S2352-7110(25)00048-2/sb11
http://refhub.elsevier.com/S2352-7110(25)00048-2/sb11
http://refhub.elsevier.com/S2352-7110(25)00048-2/sb11
http://dx.doi.org/10.1002/jemt.24548
http://dx.doi.org/10.1002/jemt.24548
http://dx.doi.org/10.1002/jemt.24548
http://dx.doi.org/10.1609/aaai.v38i4.28191
http://dx.doi.org/10.1609/aaai.v38i4.28191
http://dx.doi.org/10.1609/aaai.v38i4.28191
http://dx.doi.org/10.1016/j.cels.2022.12.006
http://dx.doi.org/10.1016/j.cels.2022.12.006
http://dx.doi.org/10.1016/j.cels.2022.12.006
http://dx.doi.org/10.1109/iccv51070.2023.01963
http://dx.doi.org/10.1038/s41467-023-36096-w
http://dx.doi.org/10.1038/s41467-023-36096-w
http://dx.doi.org/10.1038/s41467-023-36096-w
http://dx.doi.org/10.1016/j.cmpb.2022.106949
http://dx.doi.org/10.1007/s12021-021-09556-1
http://dx.doi.org/10.1007/s12021-021-09556-1
http://dx.doi.org/10.1007/s12021-021-09556-1
http://dx.doi.org/10.1083/jcb.202208005
http://dx.doi.org/10.1083/jcb.202208005
http://dx.doi.org/10.1083/jcb.202208005
http://dx.doi.org/10.1109/ISBI52829.2022.9761477
http://dx.doi.org/10.1109/ISBI52829.2022.9761477
http://dx.doi.org/10.1109/ISBI52829.2022.9761477
http://dx.doi.org/10.1364/BOE.464177
http://dx.doi.org/10.1038/s41592-021-01234-z
http://dx.doi.org/10.1016/j.isci.2020.101601
http://dx.doi.org/10.1016/j.isci.2020.101601
http://dx.doi.org/10.1016/j.isci.2020.101601
http://dx.doi.org/10.1016/j.compbiomed.2020.103693
http://dx.doi.org/10.1016/j.compbiomed.2020.103693
http://dx.doi.org/10.1016/j.compbiomed.2020.103693
http://dx.doi.org/10.1109/JSTSP.2020.3005317
http://dx.doi.org/10.3389/fnana.2018.00092
http://dx.doi.org/10.1109/TMI.2011.2171705
http://dx.doi.org/10.1117/12.2043517
http://refhub.elsevier.com/S2352-7110(25)00048-2/sb29
http://refhub.elsevier.com/S2352-7110(25)00048-2/sb29
http://refhub.elsevier.com/S2352-7110(25)00048-2/sb29
http://refhub.elsevier.com/S2352-7110(25)00048-2/sb29
http://refhub.elsevier.com/S2352-7110(25)00048-2/sb29
http://dx.doi.org/10.6075/J0SF2W0K
https://library.ucsd.edu/dc/object/bb81936790
https://library.ucsd.edu/dc/object/bb81936790
https://library.ucsd.edu/dc/object/bb81936790
http://dx.doi.org/10.1016/j.jsb.2024.108067
http://dx.doi.org/10.1016/j.jsb.2024.108067
http://dx.doi.org/10.1016/j.jsb.2024.108067
http://dx.doi.org/10.1117/12.2293291
http://dx.doi.org/10.1117/12.2293291
http://dx.doi.org/10.1117/12.2293291

	MitoSeg: Mitochondria segmentation tool
	Motivation and significance
	Software description
	Software architecture
	Phase 1 - Preprocessing, Ridge Detection, Energy Mapping, Curve Fitting
	Phase 2 - Shape Extraction, Validation
	Phase 3 - Postprocessing

	Software functionalities
	Mandatory and Optional Command Line Arguments
	Custom Algorithm Settings
	Phase Selection
	Multithreaded Execution
	3D Mesh Outputs for External Tools
	MitoSeg as a Docker Application

	Illustrative examples
	Impact
	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References

