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MOTIVATION Deep learning models have been developed to automatically infer mitochondrial instances in
volume electron microscopic datasets. However, in order to obtain their cellular landscape, individual mito-
chondria need to be assigned to the host cell. Oftentimes, cell membrane contouring, as a separate task, can
be extremely demanding in tissue samples, thereby hindering direct organelle-to-cell assignment based on
pixel overlap. In this study, we develop a flexible approach for use-dependent sampling of mitochondrion
populations, e.g., in a particular cell type or subcellular compartment.
SUMMARY
Recent technical advances in volume electron microscopy (vEM) and artificial-intelligence-assisted image
processing have facilitated high-throughput quantifications of cellular structures, such as mitochondria,
that are ubiquitous and morphologically diversified. A still often-overlooked computational challenge is to
assign a cell identity to numerous mitochondrial instances, for which both mitochondrial and cell membrane
contouring used to be required. Here, we present a vEM reconstruction procedure (called mito-SegEM) that
utilizes virtual-path-based annotation to assign automatically segmented mitochondrial instances at the
cellular scale, therefore bypassing the requirement of membrane contouring. The embedded toolset in web-
Knossos (an open-source online annotation platform) is optimized for fast annotation, visualization, and
proofreading of cellular organelle networks. We demonstrate the broad applications of mito-SegEM on volu-
metric datasets from various tissues, including the brain, intestine, and testis, to achieve an accurate and effi-
cient reconstruction of mitochondria in a use-dependent fashion.
INTRODUCTION

Mitochondria are vital organelles for eukaryotic cells, producing

the energy-rich compound ATP that is essential for cellular meta-

bolism. In situ, mitochondria not only vary in shape, size, and dy-

namics according to cell type and bioenergy status but also form

highly organized networks with subcellular compartment preci-

sion to meet local metabolic demands.1–3 Therefore, spatial

mapping of mitochondrial networks provides crucial information

about key aspects of mitochondrial biology (such as morpholog-

ical features, cellular positioning, and fission-fusion ratio) to

comprehend the biological relevance of mitochondrial proper-

ties under healthy conditions or in disease states.4

Recent technical advances in volume electron microscopy

(vEM) have enabled high-throughput three-dimensional (3D) im-

aging of large tissue blocks at nanometer resolutions.5–7 Using
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this approach, mitochondrial network organization has been

profiled at an unprecedented scale in various cell types,

including neurons,8–10 sensory cells,11,12 muscles,13–15 hepato-

cytes,16–18 sperm,19,20 and tumor cells.21 Currently, despite sub-

stantial progress in automated analysis powered by deep

learning (DL) algorithms,22–26 manual annotation and proof-

reading of hundreds to thousands of instances are required to

ensure trustful quantification of mitochondria, likely owing to

the complexity and diversity of their morphology as well as prev-

alent inter-organelle contacts. Moreover, different sample prep-

arations and imaging settings, cell-type-specific mitochondrial

heterogeneity, and unseen disease-related phenotypes lead to

poor DL model generalization.22 Thus, most DL pipelines still

rely on repeated cycles of use-dependent fine-tuning. Lastly, it

is often of interest to investigate the cellular landscapes of mito-

chondria, in particular those of polarized cells such as neurons,9
ary 24, 2025 ª 2025 The Author(s). Published by Elsevier Inc. 1
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Figure 1. Reconstruction of the mitochon-

drial network in a neuron

(A) Flowchart of semi-automated analysis for cell-

specific mitochondrial reconstruction using web-

Knossos. For the sake of simplicity, 2D pixel art is

used as an example.

(B) Schematic illustration of neuronal mitochon-

drial network reconstruction.

(C) Dimensions of example SBEM volume ac-

quired from the mouse brainstem (left). 3D

rendering of the reconstructed mitochondrial

networks (color coded) from three neurons (right).

(D) A representative cell-wide mitochondrial

reconstruction of somatic (orange), dendritic

(blue), and axonal (green) subpopulations of a

neuron in (C) (neuron-1). Scale bars, 50 mm.

(E and F) Cumulative frequency distribution of

mitochondrial instance volume and complexity

index in the axons, dendrites, and soma of the

neuron shown in (D) (n = 650 axonal, n = 3,890

dendritic, and n = 1,405 somatic mitochondria and

n = 192,484 mitochondria in three randomly

selected sub-volumes; see Figure S3 for details).

(G) In the same neuron as in (D), dendrites (blue)

and axons (green) were binned into 10-mm-long

segments, in which mitochondrial volumes were

measured, respectively. Data are presented as

mean ± SD of mitochondrial volumes in segments

at different path lengths away from the soma (see

STAR Methods for details).
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meaning that all mitochondria belonging to the same host cell are

sought to be assigned based on the membrane boundaries of its

interior. For intricate tissue systems like the brain, however,

cellular volume reconstruction can be more challenging in terms

of computational and human labor costs than the mitochondrial

segmentation itself,27 making a high payoff for such analysis only

on ad hoc densely segmented datasets.

Here, we report the development of a semi-automated anal-

ysis procedure (called mito-SegEM) for cell-wide mitochondrial

reconstruction in large-scale vEM data. It involves mitochondrial

segmentation by a pre-trained artificial neural network and

instance assignment using the path-based annotation tool of

webKnossos as an alternative to cell membrane contouring,
2 Cell Reports Methods 5, 100989, February 24, 2025
thus achieving a highly efficient mapping

of the cellular mitochondrial network in

various specimens, including brain

tissues.

RESULTS

Based on the online 3D data annotation

tool webKnossos,28 we developed

embedded functions that are aimed at

facilitating the reconstruction of cellular

mitochondrial networks in a semi-auto-

mated manner. The workflow (Figure 1A)

included (1) automated mitochondrial

segmentation, (2) uploading of mitochon-

drial masks to webKnossos for visualiza-
tion (Video S1), (3) manual interconnecting of cellular mitochon-

drial instances by virtual paths (Video S2), and (4) proofreading

and downloading of the mitochondrial merges associated with

host cells or subcellular compartments (Video S3). Particularly,

to enable fast interactive picking up of mitochondrial instances

by humans and avoid redundant annotation, all 3D masks of

mitochondria are allowed to be hidden, and then each of them

can be highlighted with pseudo-color by clicking on the vEM

data (demonstrated in Video S2). In addition, on each selected

mitochondrion, an annotation node was placed, and intercon-

nected nodes within the cell assembled a virtual path that allows

fast indexing of associated mitochondrial merges. Finally, a new

keyboard shortcut was implemented in webKnossos to process
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all segments that have been picked up by the path of annotation.

This tool enables a fast selection of all mitochondria associated

with the currently active path and adds them to a new segment

group with the meshes automatically loaded for easy handling

and 3D rendering (Video S4).

Mapping spatial organization of neuronal mitochondria
We first tested this procedure for neuronal mitochondrial recon-

struction in the mouse brainstem tissue (Figure 1B). A dataset

containing 3,983 consecutive images with a pixel size of 15 3

15 nm2 was acquired using serial block-face scanning EM

(SBEM)29 at a nominal thickness of 40 nm, yielding an EM volume

of 260 3 230 3 155.7 mm3 after alignment along the cutting di-

rection (Figure 1C). Automated segmentation of mitochondrial

instanceswas performed using a pre-trained 3DU-net25 with da-

taset-specific minor modifications30 (Figure S1), which gener-

ated a map of 3D masks containing 1,048,575 mitochondria in

the volume before proofreading. The EM volume, together with

themasks, was then uploaded to webKnossos for the inspection

and assignment of individual mitochondria to the corresponding

host cells. For proof-of-principle purposes, we randomly chose

three neuronal cell bodies as starting points for neurite assign-

ments of mitochondrial instances with our new tools.

The quantification revealed that each neuron accommodated

7,495 ± 1,146 (mean ± SD) mitochondrial instances, which was

about 0.75% of all the mitochondria in the dataset (Figures 1C

and S2). Next, in one neuron, we subdivided the mitochondria

into three subpopulations based on cellular positions, i.e., in

the soma, dendrites, or axons (Figure 1D), by simply modifying

the annotation paths in webKnossos. In contrast to random sam-

pling, our cell-based quantification suggests neuronal compart-

ment-specific differences in the volume and complexity of mito-

chondria (Figures 1E and 1F). Note that the example cell features

an overall higher ratio of simple mitochondria than those from

randomly sampled volumes (Figure 1G), implying an inter-

cellular heterogeneity in mitochondrial complexity. Furthermore,

we showed distinct spatial distributions of mitochondria in the

dendrites and axons (Figure 1H).

Mitochondrial morphologies in mouse intestine and
testis tissues
To highlight the general applicability of the mito-SegEM work-

flow, we analyzed two additional datasets from various mouse

tissues. First, an intestinal sample block was cut at a 50 nm

step size, and 1,000 consecutive slices were collected using

an automated tape-collecting ultramicrotome (ATUM).31 The

SEM images were acquired at a pixel size of 8 3 8 nm2 and

sequentially aligned to yield an EM volume of 41 3 57.3 3

50 mm3. Likewise, mitochondrial instances were automatically

segmented and assigned to eight individual cells located at

different regions of the intestinal crypt (Figures 2A and 2B). On

average, each cell contained 80 ± 8 (mean ± SD) mitochondria

(Figure S4A) with relatively broad size distributions (Figure 2C)

and differential degrees of complexity (Figure 2D). Second, we

reanalyzed a previously published SBEM dataset32 (dimension:

49.8 3 66 3 125 mm3, voxel size: 15 3 15 3 50 nm3) of mouse

testis tissue (Figures 2E and 2F), in which twelve cells were

randomly selected for mitochondrial reconstruction (491 ± 322,
mean ± SD mitochondria per cell; Figure S4B). This revealed

overall small-sized and simple mitochondria in the germ cells

with a limited inter-cell difference (Figures 2G and 2H).

Annotation consumption for the mitochondrial
assignment to host cells
Assigning individualmitochondria to corresponding host cellswas

an underestimated task that required accurate segmentation of

both mitochondrial and cell membranes to calculate their spatial

overlapping. In the mito-SegEM workflow, we employed virtual-

path-based annotation to replace unnecessary contouring of the

host cell membranes, whose annotation was usually done slice

by slice. In neurons, for instance, contouring a small neurite frag-

ment that contained one 1-mm-sized mitochondrion required

manual tracing throughout 25 slices of 40 nm cutting thickness,

whilemito-SegEMsimplified this to a single click on themitochon-

drion. Thus, we speculated an increase in the annotation speed by

one order of magnitude. To quantitatively compare the time costs

between membrane contouring and virtual-path-based annota-

tion, we tested both approaches on the same datasets with pre-

segmented mitochondria (Figure 3). For the dendrite fragment

with a path length of 13.6 mm (Figures 3A–3D), annotation of all

50 mitochondria using mito-SegEM was found to be 48.8 times

faster than manual contouring of the membrane. Similarly, we re-

ported a 21.8-fold reduction in the annotation consumption on a

13.3-mm-sized cell containing 77 mitochondria (Figures 3E–3H).

The varying degrees of annotation time savings are likely owing

to different structural complexity and mitochondrial content be-

tween neurites and spherical cells.

Recently developed AI-based tools have enabled saturated

segmentation for cortical tissues, making the human annotation

consumption rate about 25 times faster on neurite reconstruc-

tion.33 Although direct comparison was not performed, virtual-

path-based annotation seemed to be as fast as the focused

annotation on AI-segmented neurites, without the need for

computational resources and dataset-specific parameter tuning.

Thereby, mito-SegEM is currently advantageous over other

methods in terms of reconstruction costs in many scenarios and

provides a fast alternative for studies whose primary goal is the

mitochondrial network instead of dense neurite reconstruction.

DISCUSSION

In the present work, we have developedmito-SegEM to facilitate

use-dependentmitochondrial network reconstruction in electron

microscopic volumes. By combining automatic mitochondrial

segmentation and virtual-path-based annotation, mito-SegEM

enabled the efficient assignment of mitochondrial instances

rather than individual pixels to the host cell. Besides, this proced-

ure bypassed the contouring of the cell membrane borders that

often appear intricate in tissues. We illustrated the broad appli-

cability of our procedure on vEM datasets of the mouse brain

containing intermingled neurites (Figure 1C), as well as the intes-

tine and testis (Figures 2B and 2E), in which densely packed cells

show less defined membrane borders.

Neurons are polarized cells with anatomically distinct compart-

ments. This feature helps mitochondria maintain microenviron-

ments in support of unique subcellular functions,1,34 including
Cell Reports Methods 5, 100989, February 24, 2025 3



Figure 2. Cell-type-specific differences in

mitochondrial morphology

(A) EM image of a single ultra-thin slice from the

mouse intestinal tissue. Mitochondria were auto-

matically segmented and labeled with pseudo-

colors. Scale bar, 10 mm.

(B) Volume of the acquired ATUM dataset (left), in

which eight cells (color coded) were randomly

selected for mitochondrial reconstruction (right).

(C and D) Cumulative frequency distributions of

the volume and complexity index of mitochondrial

instances per cell were computed from the re-

constructions in (B).

(E) Example EM image with mitochondrial seg-

mentations (pseudo-colored) of the mouse testis

tissue block. Scale bar, 10 mm.

(F) SBEM volume (left) and 3D rendering of the

mitochondrial reconstruction in twelve randomly

selected cells.

(G and H) Same as (C) and (D) but for cumulative

frequency distributions of mitochondrial instance

volume and complexity index from the cellular

reconstructions shown in (F). Insets: same plots

but with an expanded x axis.
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synaptic plasticity,35–37 axonal branching,38,39 and presynaptic

release.39–41 Thus, it is of particular significance for both basic

neuroscience and clinical studies to quantitatively characterize

the compartment-specific mitochondrial morphologies in healthy

individuals and disease models. While recent progress in vEM

methods provides an unprecedented opportunity to visualize

the cellular landscape of mitochondrial networks at nanometer

resolution in 3D,9 a fast extraction of this information relies on ex-

isting full-volume reconstructions of neurites, to which individual

mitochondria could be automatically assigned. Just like

SegEM,42 our procedure, which profits from well-established

neuronal mitochondrial segmentation and efficient skeleton anno-

tation, can presumably achieve a 20- to 50-fold reconstruction ef-

ficiency gain (Figures 3D and 3H) and make a neurite-specific

mapping of mitochondrial morphology affordable in most labora-

tories (Figure 1C). In addition, the skeleton-like annotation not only

allows a real-time update of assignedmitochondria upon split and
4 Cell Reports Methods 5, 100989, February 24, 2025
merge operations of neurites during proof-

reading in webKnossos but also enables a

spatial correlation of the mitochondrial

network with numerous published neurite

tracings and synapse annotations.43–46

Moreover, it has been recently shown

that mitochondria can be used to facilitate

neurite tracing in a focused annotation

mode due to their elongation and ubiqui-

tous presence in a neuron.47

Much progress has been made in

improving the accuracy of mitochondrial

segmentation using an adaptive template

transformer (ATFormer) combined with a

hierarchical attention learning mechanism

for the simultaneous identification of the

mitochondrial mask and contour.25,26
Moreover, it has been recently demonstrated that promising infer-

ence results of mitochondrial segmentation can be readily deliv-

ered by a generalist DL model trained on massive EM datasets.22

However, given the structural diversity and different imaging set-

tings, quantifications of mitochondrial morphologies without

proofreading would not be granted in most case studies. In prin-

ciple, the mito-SegEM procedure will allow transfer learning of a

generalist model through human-in-the-loop annotation of mito-

chondria within the cells of interest only, bypassing the excessive

requirement of model perfection for datasets with intermixed cell

types or cells at different phases. Another advantage of this anal-

ysis routine is that the result from path annotation can be applied

to the samedataset withmitochondrial masks inferred by different

DL models, allowing the assignment of mitochondria with pro-

gressively improved segmentation outcomes. In order to enhance

this function, further work will incorporate special nodes to inter-

actively correct false split or merge errors.



Figure 3. Annotation consumption needed for mitochondrial assignment

(A) Cropped EM image of the analyzed dendrite fragment from the mouse brainstem dataset. M, mitochondrion. Scale bar, 2 mm.

(B) AI-segmentedmitochondrial masks were labeled with pseudo-colors and overlaid on the raw image. Membrane contours of the dendrite (blue) were manually

traced, within which annotated virtual paths were indicated as red lines.

(C) The dendrite fragment (throughout 340 consecutive slices cut at a thickness of 40 nm) containing 50 mitochondria (colored) was rendered in 3D.

(D) The normalized annotation durations required for slice-by-slice membrane contouring and annotation of mitochondria with virtual paths only.

(E and F) An example cell was chosen from the mouse intestinal dataset. N, nucleus; ER, endoplasmic reticulum; M, mitochondrion; SG, secretory granule. The

raw EM image (E) and its overlap (F) with mitochondrial masks (color coded), the cell mask (blue), and virtual paths (red lines) are shown. Scale bar, 2 mm.

(G) 3D rendering of the analyzed cell (throughout 266 consecutive slices, 50 nm thick) containing 77 mitochondria (colored).

(H) Required annotation consumption for cell membrane contouring and virtual-path-based mitochondrial annotation.
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Limitations of the study
Here, we demonstrated an efficient procedure for pre-cell anal-

ysis of mitochondria in vEM datasets. Since it still relies on hu-

man annotation, the workload linearly increases with dataset

size. Nevertheless, it provides an additional option when AI-

based full segmentation is not required or is unaffordable for

the labs. Besides mitochondria, content-rich vEM datasets

enable investigations of various organelles, for instance, endo-

plasmic reticula, lipid droplets, and lysosomes, as well as inter-

organelle contact sites.16,17,48,49 Our subsequent work will

extend this analysis routine to amulti-organelle approach by par-

allelizing reconstructions of different organelles with specialist

DL models, serving as a powerful tool for nanoscale mapping

of a comprehensive cell atlas.
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Codes used for analysis This paper https://doi.org/10.5281/zenodo.14742225
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Amira Thermo Scientific, Inc release 2019.2

MATLAB and Statistics Toolbox MathWorks, Inc release 2021a
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Adult C57BL/6 male mice were used to generate the vEM datasets for this paper. Experiments were conducted at Shanghai Institute

of PrecisionMedicine. All procedures were approved by the Institutional Authority for Laboratory Animal Care of Shanghai Ninth Peo-

ple’s Hospital (SH9H-2020-A65-1).

METHOD DETAILS

Volume electron microscopy datasets
Themouse brainstemSBEMdataset contained 3983 single images (160003 16000 pixels) that were acquired at 15 nmpixel size and

40 nm cutting thickness using a field-emission scanning electron microscope (SEM, Gemini300, Carl Zeiss) equipped with an in-

chamber ultramicrotome (3ViewXP, Gatan). The mouse intestine dataset was produced by SEM imaging on 50-nm-thick serial sec-

tions collected by a commercial ATUM setup (RMCBoeckeler, ATUMtome), yielding 1000 images of 60003 8000 pixels at 8 nm pixel

size. Themouse testis dataset was previously reported,32 whichwas acquired using SBEMand contained 2500 50-nm-spaced single

tiles of 10000 3 4000 15-nm-sized pixels.

Image alignment and cubing
The alignment of both SBEM datasets (brainstem and testis) was performed offline using a script developed in our lab in MATLAB

(MathWorks, US) to compute image offsets based on the cross-correlation maximum between consecutive sections.45 For the in-

testine dataset, a coarse-to-fine strategy was adopted to align the serial sections owing to nonlinear distortion. In detail, coarse align-

ment was performed by extracting the corresponding points between adjacent images using an affine transformation model,

followed by fine alignment that involved pairwise correspondence extraction between adjacent images by SIFT flow,50 global adjust-

ment of correspondence positions, and image wrapping through the moving-least-square method.51

After alignment, all datasets were cubed in 3D using a Python script included in the webKnossos toolkit (https://github.com/

scalableminds/webknossos-libs) and uploaded to webKnossos for browsing and annotation.

Automated mitochondrial segmentation
The pre-trainedmitochondrial segmentationmodel25,30 was based on a residual 3DU-Net architecture with four-down/four-up layers

(See Figure S1 for more details of the network architecture), which was provided by PyTorch Connectomics (https://connectomics.

readthedocs.io/en/latest/). The model was trained to classify each voxel of the input stack (17 consecutive 256 3 256 pixel-sized

images) into the ‘‘background’’, ‘‘mitochondrial mask’’, and ‘‘mitochondrial contour’’ categories. The model output was a two-chan-

nel image stack with the same format as the input, including the predicted probability maps of mitochondrial masks and contours.

The overall loss function was

Ltotal = Lmask + Lcontour +a
�
Lmask dice + Lcontour dice

�
;
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where Lmask and Lcontour were the binary cross-entropy losses calculated for the mask and contour of mitochondrial segmentation,

respectively. Lmask dice and Lcontour dice were the Dice losses calculated for the mask and contour segmentation of mitochondria,

respectively. a was a constant value and was set to 0.5.

Model training and evaluation
The PyTorch deep learning framework (https://pytorch.org/) was employed for model training. The training datasets were randomly

cropped from the raw image stacks. For the brainstem dataset three sub-volumes (10003 10003 100 voxels); for the intestine data-

set four sub-volumes (one 1000 3 1000 3 100 voxels and three 2000 3 2000 3 100 voxels); and for the testis dataset two sub-vol-

umes (1500 3 1500 3 100 voxels) were used. The ground-truth labels of mitochondria for the training datasets were generated by

human experts using the Fiji52 plugin trakEM2.53 Formodel training, the training datasets were pre-processed by padding and cutting

pixel-by-pixel into small patches (256 3 256 3 17 voxels), which were randomly selected as inputs to conduct data augmentation,

including rotation, flip, motion blur, noise addition, small region missing, and section missing. In addition, batch normalization was

carried out during training, and the batch size was set to 4 due to hardware limitations. The model was trained for 300,000 iterations

with a base learning rate of 0.04 using WarmupCosineLR (https://github.com/facebookresearch/detectron2) and asynchronous sto-

chastic gradient descent on a single NVIDIA TITAN RTX GPU.

IOU and F1-score were used for model evaluation on three test datasets, which were cropped randomly from the raw data and

labeled manually. The model-predicted values and human ground truth were compared, yielding an IOU of 0.88 and an F1-score

of 0.94 for the test dataset of the brainstem. For the intestine and testis cases, an IOU of 0.92 and an F1-score of 0.96 as well as

an IOU of 0.90 and an F1-score of 0.95 were obtained.

To generate mitochondrial instance masks, the seeds of mitochondria (or markers) were determined with a high mask probability

and low contour probability by thresholding. Then, the marker-controlled watershed transform algorithm (part of the scikit-image li-

brary) was employed to generate high-quality instance masks of mitochondria with the seed locations and the predicted probability

map of the masks.

Mitochondria assignment by a virtual path
The segmentation of mitochondria was imported into the webKnossos using Python scripts. Next, in the ‘‘toggle merger mode’’ and

with the option ‘‘hide the unmapped segmentation’’ selected, a start point was seeded and associated mitochondria were annotated

one after another through the mouse right-clicks within individual instances. Upon each valid assignment, the corresponding mito-

chondrial instance would become visible with a pseudo-color and linked by an active node, so that missing and multiple annotations

of mitochondrial instances could be minimized. Note that the ‘‘toggle merger mode’’ does not allow a mouse click outside the seg-

ments and ignores redundant annotations of a single segment. Finally, the assembly of the nodes was utilized to specify the asso-

ciated mitochondrial instances that could be then operated as a defined group with i.e., self-written Python scripts.

Quantitative analysis
Mitochondrial volume and surface area were calculated from the image stack using a Python script developed in our lab. The mito-

chondrial complexity index (MCI) was calculated using the formula13 as below:

MCI =
surface area3

16 p2 volume2

The skeleton for each neuron was split according to its compartment to generate individual sub-skeletons for the dendrites and

axons. For each sub-skeleton, the nodes closest to the soma surface were chosen as the source nodes, and all other leaf nodes

were marked as target nodes. The shortest path length from the source node to each target node was computed using Dijsktra’s

algorithm. Each mitochondrion of the dendrite and axon was assigned to the closest skeleton node by calculating the distance be-

tween themitochondrial centroid and the skeleton node. Themitochondrial volume per unit lengthwas calculated by dividing the total

mitochondrial volume within 10 mm of the dendritic or axonal path length by the 10 mm.

Comparison of annotation consumption
In two separate annotation tasks, three independent human annotators were asked to trace the cell boundaries as well as annotate

the mitochondria using the virtual path-based way for the same dendrite fragment (340 slices) and intestinal cell (266 slices) in web-

Knossos. The required durations could be directly readout from the saved annotation files containing the time points of each tracing

or node placing (Tables S1 and S2).

QUANTIFICATION AND STATISTICAL ANALYSIS

The pipeline to compute mitochondrial segmentation is described above in the corresponding methods subsection Automatedmito-

chondrial segmentation. Mitochondrial morphological quantification is described in the corresponding methods subsection Quanti-

tative analysis. The procedure for evaluating the annotation consumption is provided in the relevant figure legends and results

section.
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