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The fruit fly Drosophila melanogaster has emerged as a key model organismin
neuroscience, inlarge part due to the concentration of collaboratively generated
molecular, genetic and digital resources available for it. Here we complement the
approximately 140,000 neuron FlyWire whole-brain connectome’ with a systematic
and hierarchical annotation of neuronal classes, cell types and developmental units
(hemilineages). Of 8,453 annotated cell types, 3,643 were previously proposed in the
partial hemibrain connectome?, and 4,581 are new types, mostly from brain regions
outside the hemibrain subvolume. Although nearly all hemibrain neurons could be
matched morphologically in FlyWire, about one-third of cell types proposed for the
hemibrain could not be reliably reidentified. We therefore propose a new definition
of cell type as groups of cells that are each quantitatively more similar to cellsina
different brain than to any other cell in the same brain, and we validate this definition
throughjoint analysis of FlyWire and hemibrain connectomes. Further analysis
defined simple heuristics for the reliability of connections between brains, revealed
broad stereotypy and occasional variability in neuron count and connectivity, and
provided evidence for functional homeostasis in the mushroom body through
adjustments of the absolute amount of excitatory input while maintaining the
excitation/inhibition ratio. Our work defines a consensus cell type atlas for the fly
brainand provides both anintellectual framework and open-source toolchain for
brain-scale comparative connectomics.

The adult fruit fly represents the current frontier for whole-brain con-
nectomics. With139,255 neurons, the newly completed full adult female
brain (FAFB) connectome isintermediate in log scale between the first
connectome of Caenorhabditis elegans (302 neurons**) and the mouse
(10®neurons), adesirable but currently intractable target®. The availabil-
ity of acomplete adult fly brain connectome now allows brain-spanning
circuits tobe mapped and linked to circuit dynamics and behaviour as
has long been possible for the nematode and more recently the Dros-
ophilalarva (3,016 neurons)®. However, the adult fly hasricher behaviour,
including complex motor control while walking or in flight’, courtship
behaviour?, involved decision making?, flexible associative memory'®",
spatial learning™ and complex™™ multisensory™ navigation.

The FlyWire brain connectome reported in our companion paper
is by some margin the largest and most complex yet obtained. The
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full connectome, derived from the approximately 100 teravoxel FAFB
whole-brain electron microscopy (EM) volume”, can be represented
asagraphwith139,255nodes and around 15.1 million weighted edges.
Here we formulate and answer key questions that are essential tointer-
preting connectomes at this scale regarding (1) how we know which
edges are important; (2) how we can simplify the connectome graph
to aid automated or human analysis; and (3) the extent to which this
connectome is a snapshot of a single brain or representative of this
species as a whole (or have we collected a ‘snowflake’?). These ques-
tions are inextricably linked with connectome annotationand cell type
identification'®* within and across datasets.

At the most basic level, navigating this connectome would be
extremely challenging without a comprehensive system of annota-
tions, which we now provide. Our annotations represent an indexed
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and hierarchical human-readable parts list’*?°, enabling biologists
to explore their systems and neurons of interest. Connectome anno-
tation is also crucial to ensuring data quality as it inevitably reveals
segmentation errors that must be corrected. Furthermore, thereis a
rich history in Drosophila of probing the circuit basis of awide range of
innate and learned behaviours as well as their developmental genetic
origins; realizing the full potential of this dataset is only possible by
cross-identifying cell types within the connectome with those charac-
terized inthe published and in-progress literature. This paper reports
this key component of the connectome together with the opensource
tools (Table 1) and resources that we have generated. As the annota-
tion and proofreading of the connectome are inextricably linked, the
companion paper® and this paper will preferably be co-cited as they
jointly describe the FlyWire resource.

Comparison with cell types proposed using the partial hemi-
brain connectome? confirmed that the majority of fly cell types is
highly stereotyped, and defined simple rules for which connec-
tions within a connectome are reliable and therefore more likely to
be functional. However, this comparison also revealed unexpected
variability in some cell types and demonstrated that many cell types
originally reported in the hemibrain could not be reliably reidenti-
fied. This discovery necessitated the development and application
of a new robust approach for defining cell types jointly across con-
nectomics datasets. Overall, this effort lays the foundation both for
deep interrogation of current and anticipated fly connectomes from
normal individuals, but also future studies of sexual dimorphism,
experience-dependent plasticity, development and disease at the whole-
brainscale.

Hierarchical annotation of a connectome

Annotations defining different kinds of neurons are key to exploring
andinterpreting any connectome; but, with the FlyWire connectome—
which we report jointly with the companion paper'—now exceeding
the100,000 neuron mark, they are also both of increased significance
and more challenging to generate. We defined a comprehensive, sys-
tematic and hierarchical set of annotations based on the anatomical
organization of the brain (Fig.1and Supplementary Videos1and 2), as
well as the developmental origin and coarse morphology of neurons
(Fig. 2). Building on these as well as validating cell types identified
from pre-existing datasets, we then defined aset of consensus terminal
cell types intended to capture the finest level of organization that is
reproducible across brains (Fig. 3).

We first collected and curated basic metadata for every neuronin
the dataset including soma position and side, and entry or exit nerve
for afferent and efferent neurons, respectively (Fig. 1). Our group
also predicted neurotransmitter identity for all neurons as reported
elsewhere?. We then defined a hierarchy of four levels: flow > super-
class > class > cell type, which provide salient labels at different granu-
larities (Fig. 1a, Supplementary Table 1 and Extended Data Fig. 2).

The first two levels, flow and superclass, were densely annotated:
everyneuronis either afferent, efferent or intrinsic to the brain (flow)
and fallsinto one of the nine superclasses: sensory (periphery tobrain),
motor (brain to periphery), endocrine (brain to corpora allata/cardi-
aca), ascending (ventral nerve cord (VNC) to brain), descending (brain
to VNC), visual projection (optic lobes to central brain), visual cen-
trifugal (central brain to optic lobes), or intrinsic to the optic lobes or
the central brain (Fig. 1b and Supplementary Table 2). Mapping to the
https://virtualflybrain.org/ (ref.22) database enables cross-referencing
of neurons and types with other publications (Methods). Note that
due to an inversion of the left-right axis during the original acquisi-
tion of the FAFB dataset”, identified during preparation of this work
(Extended DataFig.1; see the ‘FAFB laterality’ section of the Methods),
frontal figures in this work and the FlyWire connectome® have the fly’s
left on the viewer’s left, and the fly’s right on the viewer’s right, that
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Table 1| Software tools used

Name Github repository Description

Analysis (for example, NBLAST) and
visualization of neuron morphologies
in Python.

navis navis-org/navis

Transform data between brain
templates (including hemibrain and
FAFB) in Python.

navis-flybrains navis-org/

navis-flybrains

fafbseg-py flyconnectome/ Query and work with auto-segmented
fafbseg-py FAFB data (including FlyWire) in

Python.

cocoa flyconnectome/cocoa Analysis suite for comparative
connectomics in Python.

neuprint- connectome-neuprint/ Query data from neuPrint, developed

python neuprint-python by Stuart Berg (Janelia Research
Campus).

fafbseg natverse/fafbseg Support for working with FlyWire
segmentation, meshes and
annotationsinR.

neuprintr natverse/neuprintr Support for working with neuPrint
databases including the hemibrain
connectomeinR.

coconat natverse/coconat Analysis suite for comparative

coconatfly natverse/coconatfly =~ connectomicsinR.

Pythonic interface to neuroglancer
for displaying neuronal data.

SridharJagannathan/
pyroglancer

Pyroglancer

is, the opposite of the usual convention. However, all side labels are
biologically correct.

The class field contains pre-existing neurobiological groupings from
theliterature (for example, for central complex neurons; Supplemen-
tary Table 3) and is sparsely annotated (43%) for the central brain, in
large part because past research has favoured some brain areas over
others. In the optic lobes, 99% of neurons have a generic class based
ontheir neuropil innervation. Finally, 98% of all central brain neurons
were given aterminal cell type, a majority of which could be linked to at
least onereportintheliterature (Fig.1c). Our annotations for the optic
lobesinclude cell types for 92% of neurons in both left and right optic
lobes. A separate report> will describe comprehensive typing of all
neuronsintrinsic to the opticlobes. In total, we collected over 870,000
annotations for all 139,255 neurons; all are available for download and
through neuroglancer scenes (Methods and Extended Data Fig. 11).
Atotal of 32,388 (23%) neurons are intrinsic to the central brain and
77,536 (54%) neurons are intrinsic to the optic lobes. The optic lobes
and the central brain are connected through 8,053 visual projection
and 524 visual centrifugal neurons. The central brain receives afferent
input through 5,512 sensory and 2,362 ascending neurons. Efferent
output is realized through 1,303 descending, 80 endocrine and 106
motor neurons.

We find marked stereotypy in the number of central brain intrinsic
neurons—for example, betweentheleft and the right hemisphere, they
differ by only 27 (0.1%) neurons. For superclasses with less consistency
inleft versusright counts, such as the ascending neurons (140, 11%), the
discrepancies are typically due to ambiguity in the sidedness (Fig. 1d
and Methods).

Combining the dense superclass annotation for all neurons with
the connectome’ gives a birds-eye view of the input/output connec-
tivity of the central brain (Fig. 1f): 55% of the central brain’s synap-
tic input comes from the optic system; 25% from the VNC through
ascending neurons; and only 18% from peripheral sensory neurons.
Thisis surprisingas sensory neurons are almost as numerous as visual
projection neurons (Fig. 1d,e); individual visual projection neurons
therefore provide about 2.5 times more synapses, underscoring the
value of this information stream. Input neurons make about two syn-
apses onto central brain neurons for every one synapse onto output
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Fig.1|Hierarchical annotation schemafor awhole-brainconnectome.

a, Hierarchical annotation schemafor the FlyWire dataset (see the companion
paper?). Annotations for example cell type DALIPN (right) are highlighted in
red.b,Renderings of neurons for each superclass. AN, antennal nerve; APhN,
accessory pharyngeal nerve; CV, cervical connective; d, dorsal; m, medial;
MxLbN, maxillary-labial nerve; NCC, corpora cardiaca nerves; OCG, ocellar
ganglion; ON, occipital nerves; PhN, pharyngeal nerve; p, posterior.

neurons. Most output synapses target the VNC through descending
neurons (75%); the rest provide centrifugal feedback onto the optic
system (15%), motor neuron output (9%) and endocrine output to the
periphery (1%).

Afull atlas of neuronal lineages

Our top-level annotations (flow, superclass, class) provide a system-
atic but relatively coarse grouping of neurons compared with >5,000
terminal cell types expected from previous work on the hemibrain?.
Wetherefore developed anintermediate level of annotation based on
hemilineages—this provides a powerful bridge between the develop-
mental origin and molecular specification of neurons and their place
within circuits in the connectome (Fig. 2a).
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¢, Annotation counts per field. Each colour withinabar represents discrete
values; the numbers above bars count the discrete values. d, Left versus right
neuron counts per superclass. Bottom, the left and right somalocations,
respectively. e, Breakdown of sensory neuron counts into modalities. f, Flow
chartof superclass-level, feed-forward (afferent to intrinsic to efferent)
connectivity.

Central brain neurons and a minority of visual projection neurons
are generated by around 120 identified neuroblasts per hemisphere.
Each of these stem cells is defined by a unique transcriptional code
and generates a stereotyped lineage in a precise birth order by asym-
metric division**? (Fig. 2b). Each neuroblast typically produces two
hemilineages®?® that differ markedly in neuronal morphology and
can express different neurotransmitters from one another, but neu-
ronsineach hemilineage usually express asingle fast-acting transmit-
ter?*, Hemilineages therefore represent a natural functional as well
as developmental grouping by which to study the nervous system.
Within a hemilineage, neurons form processes that extend together
in one cohesive bundle (the hemilineage tract) that enters, traverses
and interconnects neuropil compartments in a stereotypical pattern
(Fig.2c). Comparingthese features between EM and previous light-level
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f, The number of central brain neurons with anidentified lineage; annotation of

data®**enabled us to compile the first definitive atlas of all hemiline-
ages in the central brain (Fig. 2c-e and Methods).

Intotal, we successfully identified 120 neuroblast lineages in FlyWire
comprising 183 hemilineages for 88% (30,233 total) of central brain
neurons (Fig. 2e,fand Extended Data Fig. 3). The unassigned neurons
are likely primary neurons born during embryonic development,
whichaccount for10% of neuronsin the adult brain®->¢, We tentatively
designated 3,779 (11%) as primary neurons either based on specific
identification in the literature® or expert assessment of diagnostic
morphological features such as larger cell bodies and broader pro-
jections. A further 797 neurons (2%) did not co-fasciculate with any
hemilineage tracts, even though their morphology suggested that
they are later-born secondary neurons®. This developmental atlas is
comprehensive as, after reviewing discrepancies between previous
studies (Methods), we identified all 119 expected lineages plus one
new lineage.

Thenumber of neurons per hemilineage can vary widely (Fig. 2h)—for
example, counting both hemispheres, FLAal contains just 30 neu-
rons whereas MBp4 (which makes the numerous Kenyon cells that
arerequired for memory storage) has 1,335. However, in general, the
number of neurons per hemilineage is between 60 and 282 (10th to
90th percentile, respectively). Nevertheless, the numbers of neurons
within each hemilineage were highly reliable, differing only by 3% (+4%)
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(putative (put.)) primary neurons is based onliterature or expert assessment
of morphology. g, The number of identified unique (hemi)lineages. h, Left
versusright number of neurons containedineach hemilineage. i, Example
morphological clustering of the AOTUv3 dorsal hemilineage reveals four
distinct subgroups.j, Neurons belonging to the AOTUv3 dorsal hemilineage
identified in the hemibrain connectome. k, FlyWire versus hemibrain number
of neurons for cross-identified hemilineages.

between the left and right hemispheres (Fig. 2h). This is consistent
with the near-equality of neurons per hemisphere noted in Fig. 1, and
indicates great precision in the developmental programs controlling
neuron number. We also identified neurons belonging to 125 hemi-
lineages in the hemibrain dataset (Fig. 2j), a connectome compris-
ing approximately half of a female fly brain® (Fig. 3a). The number of
neurons per hemilineage strongly correlates across brains (R*= 0.98),
with FlyWire hemilineages containing on average around 5% more
neurons (Fig. 2k).

Although hemilineages typically contain functionally and morpho-
logically related neurons, subgroups can be observed®. We further
divided each hemilineage into distinct morphology groups, each inner-
vating similar brain regions and taking similar internal tracts, using
NBLAST morphological clustering® (Fig. 2i, Methods, Extended Data
Fig.3, Supplementary Files 3 and 4 and Supplementary Video 3). This
generated a total of 528 groupings that are consistent across hemi-
spheres and provide an additional layer of annotations between the
hemilineage and cell type levels.

Validating cell types across brains

We next sought to compare FlyWire against the hemibrain connec-
tome?; this contains most of one central brain hemisphere and parts
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Fig.3|Across-brainstereotypy. a, Schematic of the pipeline for matching
neurons between FlyWire and the Janelia hemibrain connectomes. Conf.,
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¢, Manualreview forasample of top NBLAST hits.d, The extrapolated number
of hemibrain neurons with matchesin FlyWire. e, Example for unlikely (left)
and strong (right) morphology match. f, Example of a high-confidence cell type
(PS008) thatis unambiguously identifiable across all three hemispheres.

g, Counts of FlyWire neurons that were assigned ahemibraintype. h, The
number of hemibrain cell types that were successfully identified and the

of the optic lobe. The hemibrain was previously densely cell typed by
a combination of two automated procedures followed by extensive
manual review®>* *: NBLAST morphology clustering initially yielded
5,235 morphology types; multiple rounds of CBLAST connectivity clus-
tering split some types, generating 640 connectivity types for a final
total of 5,620 types. We have reidentified just 14% of connectivity types
and therefore use the 5,235 morphology types as a baseline for com-
parison. Although 389 (7%) of the hemibrain cell types were previously
establishedin theliterature and recorded in the https://virtualflybrain.
org/ database?, principally through analysis of genetic driver lines",
the great majority (90%) were newly proposed using the hemibrain,
thatis, derived from a single hemisphere of a single animal. This was
reasonable given the pioneering nature of the hemibrain reconstruc-
tion, but the availability of the FlyWire connectome now allows for a
more stringent re-examination.

resulting number of FlyWire cell types. i,j, Examples for many:1(i) and 1:many (j)
hemibrain type matches. The dotted vertical lines indicate truncation of the
hemibrain neurons. k, Graph representation of top NBLAST hits between
FlyWire neurons and hemibrain types. This subgraph contains nodes within
aradius of three edges from the query cell type (AVLP534). Neurons matching
multiple cell types (asterisks) must be manually resolved, whichis not always
possible.l, The number of cells per cross-matched cell type withinabrain
(FlyWire left versus right) and across brains (FlyWire versus hemibrain).

We approach thisby consideringeach celltypeinthe hemibrainasa
prediction: if we can reidentify a distinct group of cells with the same
properties in both hemispheres of the FlyWire dataset, then we con-
cludethataproposed hemibrain cell type has been tested and validated.
To perform this validation, we first used non-rigid three-dimensional
(3D) registration to map meshes and skeletons of all hemibrain neurons
into FlyWire space, enabling direct co-visualization of both datasets
andarange of automated analyses. We then used NBLAST** to calculate
morphological similarity scores between all hemibrain neurons and the
approximately 84,000 FlyWire neurons with arbours at least partially
contained within the hemibrain volume (Fig. 3a,b and Extended Data
Fig. 4a-c). We manually reviewed the top five NBLAST hits for a ran-
dom sample of individual neuron-to-neuron matches and found that
high NBLAST scores typically indicate a good morphological match
(Fig.3c). Extrapolating from this sample, we expect 99% of hemibrain
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neurons to have a morphologically very similar neuron in FlyWire
(Fig. 3d).

We next attempted tomap hemibraincell types onto FlyWire neurons.
Candidate type matches were manually reviewed by co-visualization
and only those with high confidence were accepted (Fig. 3f~h and
Methods). Crucially, thisinitial morphological matching process gen-
eratedalarge corpus of shared cell type labels between datasets; with
these in place, we developed an across-dataset connectivity cluster-
ing method that enabled us to investigate and resolve difficult cases
(see the ‘hemibrain cell type matching with connectivity’ section of
the Methods).

The majority of hemibrain cell types (56%; 2,920 out of 5,235 types)
were unambiguously found in the FlyWire dataset (Fig. 3f). A further
664 (13%) hemibrain types were mapped but had to be either merged
(many:1) or further split (1:many) (Fig. 3h). In total, 7% of proposed
hemibrain types were combined to define new ‘composite’ types (for
example, SIP078,SIP080) because the hemibrain split could not be
recapitulated when examining neurons from both FlyWire and the
hemibrain (Fig. 3i and Extended Data Fig. 4e-g). This is not too sur-
prising as the hemibrain philosophy was explicitly to err on the side
of splitting in cases of uncertainty?. We found that 5% of proposed
hemibrain types needed to be split, for example, because truncation
of neurons in the hemibrain removed a key defining feature (Fig. 3j).
Together these revisions mean that the 3,584 reidentified hemibrain
cell types map onto 3,643 consensus cell types (Fig. 3h). All revisions
were confirmed by across-dataset connectivity clustering.

Notably, 1,651 (32%) hemibrain cell types could not be reidentified in
FlyWire. Ambiguities due to hemibrain truncation can partially explain
this: we were much more successful at matching neurons that were
not truncated in the hemibrain (Fig. 3g). However, this appears not to
be the main explanation. Especially in cases of multiple, very similar,
‘adjacent” hemibrain types, we often encountered ‘chains’ of ambigu-
ity that made assigning types difficult (Fig. 3k). Further investigation
(Fig. 6) suggests that the majority of these unmatched hemibrain types
arenotexactly replicable across animals. Instead, we show that multi-
connectome analysis can generate validated cell types that are robust
tointerindividual variation.

In conclusion, we validated 3,643 high-confidence consensus cell
type labels for 43,737 neurons from three different hemispheres and
two different brains (Fig. 3g). Collectively these cross-matched neurons
cover46.5% of central brain edges (comprising 49% of synapses) inthe
FlyWire graph. This body of high-confidence cross-identified neurons
enables both within-brain (FlyWire left versus right hemisphere) and
across-brain (FlyWire versus hemibrain) comparisons.

Celltypes are highly stereotyped

Using the consensus cell type labels, we found that the numbers of cells
per type across the three hemispheres are closely correlated (Fig. 31).
About oneinsix cell types shows a difference in numbers between the
left and right hemisphere and onein three across brains (FlyWire versus
hemibrain). The mean difference in the number of cells per type is small
though: 0.3 (+1.8) within brains and 0.8 (+10) across brains. Impor-
tantly, cell types with fewer neurons per type are less variable (Extended
DataFig.4i,j). At the extreme, ‘singleton’ cell types account for 59% of
all types in our sample; they often appear to be embryonic-born, or
early secondary neurons, and only very rarely comprise more than
one neuron—only 3% of neurons that are singletons in both FlyWire
hemispheres have more than1member in the hemibrain. By contrast,
more numerous cell types are also more likely to vary in number both
within but even more so across brains (Extended Data Fig. 4i,j).
Synapse counts were also largely consistent within cell types, both
within and across brains. To enable a fair comparison, the FlyWire syn-
apse cloud was restricted to the smaller hemibrain volume. Although
this does not correct for other potential confounds such as differences
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in the synaptic completion rates or synapse detection, pre- and
post-synapse counts per cell type were highly correlated, both within
brains (PearsonR=0.99; P < 0.001) and across brains (PearsonR = 0.92
and 0.76 for pre- and post-synapses, respectively; P< 0.001; Fig. 4a,b
and Extended Data Fig. 4k,l). This is an important quality control and
pre-requisite for subsequent connectivity comparisons.

The fly brain is mostly left-right symmetric, but inspection of the
FlyWire dataset revealed a small number of asymmetries. For example,
LC6 and LC9 visual projection neurons form a large axon bundle that
follows the normal pathin the right hemisphere*but, in the left hemi-
sphere, it loops over (that is, medial) the mushroom body peduncle;
nevertheless, the axons still find their correct targets as previously
reported*. We annotated other examples of this ranging from small
additional/missing branches to misguided neurite bundles and found
thatonly 0.4% of central brain neurons exhibit such biological oddities
(Extended Data Fig. 5).

Interpreting connectomes

Brain wiring develops through a complex and probabilistic develop-
mental process***. To interpret the connectome, itis vital to obtaina
basic understanding of how variable that biological process is. This is
complicated by the fact that the connectome we observe is shaped not
just by biological variability but also by technical noise, for example,
fromsegmentationissues, synapse detection errors and synaptic com-
pletionrates (the fraction of synapses attached to proofread neurons)
(Fig.4a).Here we use the consensus cell types to assess which connec-
tions are reliably observed across three hemispheres of connectome
data. Weuse the term ‘edge’ to describe the set of connections between
two cell types, and its ‘weight’ as the number of unitary synapses (no
threshold, that is, >1 synapses) forming that connection.

Weights of individual edges are highly correlated within (Pearson
R=0.97,P<0.001) and across (PearsonR = 0.8, P < 0.001) brains (Fig. 4c
and Extended Data Fig. 6a). Consistent with this, cell types exhibit
highly similar connectivity within as well as across brains (Fig.4d and
Extended Data Fig. 6b,c). While the connectivity (cosine) similarity
across brains is lower than within brains (P < 0.001), the effect size is
small (0.045 + 0.096) andis atleastin part due to the aforementioned
truncation in the hemibrain.

We next examined, for a given edge between two cell types in one
hemisphere, the odds of finding the same connectionin another hemi-
sphere or brain. Examination of 572,980 edges present in at least one
ofthethree brain hemispheres showed that 53% of the edges observed
in the hemibrain were also found in FlyWire. This fraction is slightly
higher when comparing between the two FlyWire hemispheres: left to
right: 61%; right to left: 59% (Fig. 4e). Weaker edges were less likely to
be consistent: an edge consisting of a single synapse in the hemibrain
hasa42% chancetobealso presentinasingle FlyWire hemisphere, and
only a16% chance to be seenin both hemispheres of FlyWire (Fig. 4f).
By contrast, any edge of more than ten synapses in any hemisphere
can be reproducibly (>90% of the time, rounded) found in the other
two hemispheres. Although only 16% of all edges meet this threshold,
they comprise around 79% of all synapses (Fig. 4g and Extended Data
Fig. 6e). We also analysed normalized edge weights expressed as the
fraction of the input onto each downstream neuron; this accounts
for the small difference in synaptic completion rate between FlyWire
and the hemibrain. With this treatment, the distributions are almost
identical for within and across brain comparisons (Fig. 4g (compare
the left and right panels)); edges constituting >0.9% of the target cell
type’stotalinputs have agreater than 90% chance of persisting (Fig. 4g
(right)). Around 7% of edges, collectively containing over half (54%) of
all synapses, meet this threshold.

We observed that the fraction of edges persisting across datasets
plateaued as the edge weightincreased. Using alevel of 99% edge per-
sistence, we can define asecond principled heuristic: edges greater than
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2.6% edge weight (or 31synapses) can be considered to be strong. Note
that these statistics defined across the whole connectome can have
exceptions in individual neurons. For example, descending neuron
DNp42 receives 34 synapses from PLP146 in FlyWire right, but none
on the left or hemibrain; this may well be an example of developmen-
tal noise (that is, bona fide biological variability, rather than techni-
calnoise).

So far, we have examined only the binary question of whether an
edge exists or not. However, the conservation of edge weight is also
highly relevant for interpreting connectomes. We next considered,
given that an edge is present in two or more hemispheres, the odds
thatit will have asimilar weight. Edge weights within and across brains
are highly correlated (Fig. 4c), a30-synapse edge in the hemibrain, for
example, will on average consist of 29 synapses in FlyWire, despite
differences in synaptic detection and completion rates for these two
datasets imaged with different EM modalities'. The variance of edge
weightsis considerable though: 25% of all 30-synapse hemibrain edges
will consist of fewer than 13 synapses in FlyWire, and 5% will consist of
only1-2synapses. Consistency is greater when looking within FlyWire:
a30-synapse edge on the left will, on average, consist of 31 synapses
ontheright. Still, 25% of all 30-synapse edges on the left will consist of
21synapses or less on the right, and 5% of only 1-8 synapses (Fig. 4h).

Theenvelopesrepresent quantiles. i, Model for theimpact of technical noise
(synaptic completionrate, synapse detection) on synaptic weight from cell
typesitoj. Theraw weight from the connectome for eachindividual edge is
scaled up by the computed completion rate for all neurons within the relevant
neuropil; random draws of the same fraction of those edges then allow an
estimate of technical noise.j, Observed variability explainable by technical
noise as fraction of FlyWire left-right edge pairs that fall within the 5-95%
quantiles for the modelled technical noise. k, Modelled biological variability
(observed variability - technical noise). R (band c) is the Pearson correlation
coefficient.Ford, statistical analysis was performed using unpaired t-tests;
***P<0.001.

To assess how much of this edge weight variability is biological and
how much is technical, we modelled the impact of technical noise on
afictive ground truth connectome (Fig. 4i and Methods). This model
was randomly subsampled according to postsynaptic completion
rate (in the mushroom body calyx, for example, there is a 6% differ-
ence betweenthe left and right hemisphere of FlyWire; Extended Data
Fig. 6f), and synapses were randomly added and deleted according
to the false-positive and false-negative rates reported for the syn-
apse detection*®. Repeated application of this procedure generated
adistribution of edge weights between each cell type pair expected
due to technical noise alone. On average, 65% of the observed vari-
ability of edge weight between hemispheres fell within the range
expected due to technical noise; this fraction approached 100% for
weaker synapses (Fig. 4j). For example, cell type LHCENT3 targets
LHAV3g2 with 30 synapses on the left but only 23 on the right of Fly-
Wire, which is within the 5-95% quantiles expected due to technical
noise alone. Overall, this analysis shows that observed variability
(Fig. 4h (left)) is greater than can be accounted for by technical noise,
establishing alower bound for likely biological variability (Fig. 4k),
and suggests another simple heuristic: differences in edge weights of
30% or less may be entirely due to technical noise and should not be
overinterpreted.
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receivesinput from K. The dotted vertical lines represent the mean. g, The
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Variability in the mushroombody

The comprehensive annotation of cell types in the FlyWire dataset
revealed that the number of Kenyon cells (KCs), the intrinsic neu-
rons of the mushroom body, is 30% larger per hemisphere thanin the
hemibrain (2,597 KCs in FlyWire right; 2,580 in FlyWire left; and 1,917
inhemibrain), well above the average variation in cell counts (5 + 12%).
While these KC counts are within the previously reported range*, the
difference presents an opportunity to investigate how connectomes
accommodate perturbations in cell count. The mushroom body con-
tains five principal cell classes: KCs, mushroom body output neurons
(MBONSs), modulatory neurons (dopaminergic neurons (DANs) and
octopaminergic neurons (OANs)), the dorsal paired medial (DPM)
and anterior paired lateral neuron (APL) giant interneurons*® (Fig. 5a).
KCs further divide into five main cell types on the basis of which parts
of the mushroom body they innervate: KCab, KCab-p, KCg-m, KCa’b’
and KCg-d (Fig.5b). Of those, KCab, KCa’b’and KCg-m are the primary
recipients of largely random*®* (but see ref. 50) olfactory input through
around 130 antennal lobe projection neurons (ALPNs) comprising 58
canonical types®*°, Global activity in the mushroom body is regulated
through an inhibitory feedback loop mediated by APL, a single large
GABAergic neuron®. Analogous to the mammalian cerebellum, KCs
transformthe dense overlapping odour responses of the early olfactory
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excitation/inhibition ratio for KCs. An explanation of enhanced box plots
isprovidedinthe Methods. i, The fraction of MBON input budget coming
fromKCs. Eachlinerepresentsan MBON type.j, MBONO9 as an example for
KCto MBON connectivity. AMBONs are shown in Extended DataFig. 7.

k, Dimensionality (dim(h)) as function of amodelled K. The arrowheads mark
observed mean K'values. I, Summarizing schematic. Exc., excitatory. For fand
h, Cohen’sd effect size values are shown for pairwise comparisons where
P<0.01; Welch’s tests (f) and Kolmogorov-Smirnov tests (h) were applied.

system into sparse non-overlapping representations that enable the
animal to discriminate between individual odours during associative
learning®, The difference in cell counts is not evenly distributed
across all KC types: KCg-m (and to a lesser extent KCg-d and KCa’b’)
are almost twice as numerous in FlyWire versus hemibrain while KCab
andKCab-p are presentinsimilar numbers (Fig. 5¢). Protein starvation
duringthelarval stage caninduce specific increases inKCg-m number*,
suggesting that environmental variations in food resources may have
contributed to this difference.

To examine how this affects the mushroombody circuitry, we opted
to comparethe fraction of the input or output synapticbudget across
different KCs, as this is well matched to our question and naturally
handles a range of technical noise issues that seemed particularly
prominent in the mushroom body completion rate (Methods and
Extended Data Fig. 7a). We found that, despite the large difference in
KCg-m cell counts between FlyWire and hemibrain, this cell type con-
sistently makes and receives 32% and 45% of all KC pre-synapses and
post-synapses, respectively (Fig. 5d and Extended Data Fig. 7e). This
suggested thatindividual FlyWire KCg-m neurons receive fewer inputs
and make fewer outputs than their hemibrain counterparts. The share of
ALPN outputsallocated to KCg-mis around 55% across all hemispheres
(Fig.5e), and the average ALPN to KCg-m connectionis comparablein
strength across hemispheres (Extended Data Fig. 7f); however, each



KCg-m neuron receives input from a much smaller number of ALPN
typesin FlyWire than in the hemibrain (5.74, 5.89 and 8.76 for FlyWire
left, right and hemibrain, respectively; Fig. 5f). FlyWire KCg-m neurons
thereforereceive inputs with the same strength but from fewer ALPNs.

This pattern holds for other KCg-m synaptic partners as well. Similar
to the excitatory ALPNSs, the share of APL outputs allocated to KCg-m
neurons is essentially constant across hemispheres (Fig. 5g). Thus,
eachindividual KCg-m neuronreceives proportionally less inhibition
from the APL, as well as less excitation, maintaining a similar excita-
tion/inhibition ratio (Fig. 5h). Furthermore, as a population, KCg-m
neurons contribute similar amounts of input to MBONs (Fig. 5i,j and
Extended Data Fig. 7h).

Past theoretical work has shown that the number (K) of discrete
odour channels (that is, ALPN types) providing input to each KC has
an optimal value for maximizing dimensionality of KC activity and,
therefore, discriminability of olfactory input®>**. The smaller value
for Kobserved for KCg-m neuronsin the FlyWire connectome (Fig. 5g)
raises the question of how dimensionality varies with K for each of the
KC types. Using the neural network rate model described previously*?,
we calculated dimensionality as a function of K for each of the KC types,
using the observed KC counts, ALPN to KC connectivity and global
inhibitionfromthe APL. This analysis revealed that optimal values for K
are lower for KCg-mneurons in FlyWire thanin the hemibrain (Fig. 5k),
consistent with the observed values.

Takentogether, these results demonstrate that, for KCg-mneurons,
the brain compensates for adevelopmental perturbation by changing
asingle parameter: the number of odour channels each KC samples
from. By contrast, KCa’b’ cells, which are also more numerous in Fly-
Wire thaninthe hemibrain, appear to use ahybrid strategy of reduced
K combined with areduction in ALPN to KCa’b’ connection strength
(Extended Data Fig. 7f). These findings contradict earlier studies in
which aglobalincrease in KC numbers through genetic manipulation
triggered anincrease in ALPN axon boutons (indicating an compensa-
tory increase in excitatory drive to KCs) and a modest increase in KC
claws (suggesting an increase rather than decrease in K)*>*°. This may
be due to the differences in the nature and timing of the perturbation
inKC cell number, and the KC types affected.

Toward multiconnectome cell typing

Asthefirst dense, large-scale connectome of a fly brain, the hemibrain
dataset proposed over 5,000 previously unknown cell types in addi-
tion to confirming around 400 previously reported types recorded
in the http://virtualflybrain.org/ database?. As this defines a de
facto standard cell typing for large parts of the fly brain, our initial
work plan was simply to reidentify hemibrain cell types in FlyWire,
providing a critical resource for the fly neuroscience community.
While this was successful for 68% of hemibrain cell types (Fig. 3),
32% could not be validated. Given the great stereotypy generally
exhibited by the fly nervous system, this resultis both surprising and
interesting.

We can imagine two basic categories of explanation. First, that
through ever closer inspection, we may successfully reidentify these
missing cell types. Second, that these definitions, mostly based on
asingle brain hemisphere, might not be robust to variation across
individuals. Distinguishing between these two explanations is not at
all straightforward. We began by applying across-dataset connectiv-
ity clustering to large groups of unmatched hemibrain and FlyWire
neurons. We observed that most remaining hemibrain types showed
complex clustering patterns, which both separated neurons fromthe
same proposed cell type and recombined neurons of different proposed
hemibrain types.

While it is always more difficult to prove a negative result, these
observations strongly suggest that the majority of the remaining
1,696 hemibrain types are not robust to interindividual variation. We

therefore developed a definition of cell type that uses interanimal
variability: a cell typeisagroup of neurons that are each more similar
to agroup of neurons in another brain than to any other neuron in
the same brain. This definition can be used with different similarity
metrics but, for connectomics data, a similarity measure incorporat-
ing morphology and/or connectivity is most useful. Our algorithmic
implementation of this definition operates on the co-clustering den-
drogram by finding the smallest possible clusters that satisfy two
criteria (Fig. 6a): (1) each cluster must contain neurons fromall three
hemispheres (hemibrain, FlyWire right and FlyWire left); (2) within
each cluster, the number of neurons from each hemisphere must be
approximately equal.

Determining how to cutadendrogram generated by data clustering
is awidespread challenge in data science for which there is no single
satisfactory solution. A key advantage of the cell type definition that
we proposeis thatit provides very strong guidance about how to assign
neurons to clusters. This follows naturally from the fact that connec-
tome data provide us with all neurons in each dataset, rather than a
random subsample. This advantage of completeness is familiar from
analogous problems such as the ability to identify orthologous genes
when whole genomes are available’.

Analysis of the hemibrain cell type AOTU063 provides arelatively
straightforward example of our approach (Fig. 6b and Extended Data
Fig.10). Morphology-based clustering generates a single group, com-
prising all six AOTUO63 neurons from each of the three hemispheres.
However, clustering based on connectivity reveals two discrete groups,
with equal numbers of neurons from each hemisphere, suggesting
that this type should be split further. Here, algorithmic analysis across
multiple connectomes reveals consistent connectivity differences
between subsets of AOTUO63 neurons.

Totest whether this approachis applicable to more challenging sets
of neurons, we set aside the hemibrain types and performed a complete
retyping of neuronsin the central complex (Fig. 6¢), a centre for naviga-
tionin the insect brain that has been subject to detailed connectome
analysis*'. We selected two large groups of neurons innervating the
fan-shaped body (FB) that show a key difference in organization. The
firstgroup, FC1-3 (357 neuronsin total), consists of columnar cell types
that tile the FB innervating adjacent non-overlapping columns. The
second group, FB1-9 (897 neuronsin total), contains tangential neurons
where neurons of the same cell type are precisely co-located in space
(Fig. 6d).Standard NBLAST similarity assumes that neurons of the same
celltype overlap closely in space; although thisis true for most central
brain types, it does not hold for repeated columnar neurons such as
those in the opticlobe or these FC neurons of the FB. We therefore
used aconnectivity-only distance metric co-clustering across the three
hemispheres. This resulted in seven FC clusters satisfying the above
criteria (Fig. 6e,f). Five of these cross-brain types have a one-to-one
correspondence with hemibrain types, while two are merges of multi-
ple hemibrain types; only a small number of neurons are recombined
across types (Fig. 6g). For the second group, FB1-9, a combined mor-
phology and connectivity embedding was used. Co-clustering across
the three hemispheres generated 114 cell types compared to 146 cell
typesinthe hemibrain (Fig. 6h and Extended DataFig. 8). In total, 44%
ofthese types correspond one-to-one to ahemibraincell type; 11% are
splits (1:many), 12% are merges (many:1) and 33% are recombinations
(many:many) of hemibrain cell types. The 67% (44 + 11 + 12) success
rate of this de novo approach in identifying hemibrain cell types is
slightly higher than the 61% achieved in our directed work in Fig. 3;
it is consistent with the notion that further effort could still identify
some unmatched hemibraintypes, but that the majority will probably
require retyping.

All of the preceding efforts have focused on cell typing neurons
contained within both FlyWire and the hemibrain. We next examined
the extensive regions of the brain covered only by FlyWire and not
by hemibrain. Based on the lessons learned from the joint analysis of
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FC1-3 and FB1-9 (right). e, Hierarchical clustering from connectivity
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hemibrain and FlyWire, we ran a co-clustering of neurons from the
two hemispheres of FlyWire to fill in missing cell types (Fig. 6i,j and
Extended Data Fig. 9). This combined both morphology and connec-
tivity measures, was carried out separately for each hemilineage and
produced 3,200 new central brain cell types for a total of 8,453 includ-
ingthe opticlobes. We further compared double-hemisphere (FlyWire
left/right) and triple-hemisphere analysis (FlyWire + hemibrain) for 25
cross-identified lineages that are not truncated in the hemibrain. This
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comparison found that 70% of these new types survive addition of a
third hemisphere with minor edits (1:many, many:1). That percentage
increases to 84% if we exclude cases in which just one neuron changes
clusters (Extended Data Fig. 9).

In summary, cell typing based on joint analysis of multiple connec-
tomes proved capable of recapitulating many cell types identified in
the hemibrain dataset, while also defining new candidate cell types
thatare consistent both within and across datasets. Further validation



ofthe new types proposed by this approach will depend on additional
Drosophila connectomes, which are forthcoming. We predict that cell
types defined in this manner will be substantially more robust than cell
types defined from a single connectome alone.

Discussion

Here we generated human-readable annotations for all neuronsinthe
fly brain at various levels of granularity: superclass, cell class, hemi-
lineage, morphology group and cell type. These annotations provide
salient groupings that have already been proven to be useful not only
inour own analyses, but also in many of those in our companion paper*
aswellas other publicationsin the FlyWire paper package introduced
there, and to researchers now using the online platforms Codex
(https://codex.flywire.ai) and FAFB-FlyWire CATMAID spaces (https://
fafb-flywire.catmaid.org). Hemilineage annotations also provide akey
starting point to link the molecular basis of the development of the
central brain to the wiring revealed by the connectome; such work
has already begun in the more repetitive circuits of the optic lobe®.
Thecell type atlas that we provide of 8,453 cell types, covering 96.4%
of allneuronsinthebrain, isto our knowledge the largest ever proposed
(the hemibrain had 5,235) and, crucially, by some margin the largest
ever validated collection of cell types®. In C. elegans, the 118 cell types
inferred from the original connectome have been clearly supported by
analysis of subsequent connectomes and molecular data®>**¢°, Ina few
casesinmammals, it hasbeen possible to produce catalogues of order
100 cell types that have been validated by multimodal data, for exam-
ple, in the retina or motor cortex?*®, Although large scale molecular
atlases in the mouse produce highly informative hierarchies of up to
5,000 clusters®**, they do not yet try to define terminal cell types—the
finest unit that is robust across individuals—with precision. Here we
tested over 5,000 predicted cell types, resulting in 3,884 validated cell
types using three hemispheres of connectome data. Informed by this,
we use the FlyWire dataset to propose an additional 3,685 cell types.

Lessons for cell typing
Our experience of cell typing the FlyWire dataset together with our
earlier participation in the hemibrain cell typing effort leads us to
drawanumber of lessons. First, we think thatitis helpful to frame cell
types generated in one dataset as predictions or hypotheses that canbe
tested either through additional connectome data or datafrom other
modalities. Related to this, although the two hemispheres of the same
brain can be treated as two largely independent datasets, we do see
evidence thatvariability can be correlated across hemispheres (Fig. 4).
We therefore recommend the use of three or more hemispheres to
define and validate new cell types both because of increased statistical
confidence and because across-brain comparisons are a strong test of
celltyperobustness. Third, thereis nofree lunchin the classic lumping
versus splitting debate. The hemibrain cell typing effort preferred to
split rather than lump cell types, reasoning that over-splitting could
easily beremedied by merging cell types atalater date?. Although this
approach seemed reasonable at the time, itappears to have led to cell
types being recombined: when using a single dataset, even domain
experts may find it very hard to distinguish conserved differences
between cell types from interindividual noise. Moreover, although
some recent studies have argued that cell types are better defined by
connectivity than morphology, we find that there is a place for both.
For de novo cell typing of future connectomes, we recommend aninitial
morphology-only matching to assign obvious matches; these shared
celltypelabels canthenbe used to define connection similarity across
datasets. This then allows extraction of balanced clusters from com-
bined morphology and connectivity co-clustering that canbe used to
assign or refine existing cell types.

Related to this, we find that across-dataset connection similar-
ity is an extremely powerful way to identify cell types. However,

connectivity-based typing is typically used iteratively and especially
whenused within asingle dataset this may lead to selection of idiosyn-
craticfeatures. Moreover, neurons can connect similarly but come from
adifferent developmental lineage, or express a different neurotrans-
mitter, precluding them from sharing a cell type. Combining these two
points, we would summarize that matching by morphology appears to
beboth more robust and sometimes less precise, whereas connectivity
matching is a powerful tool that must be wielded with care.

In conclusion, connectome data are particularly suitable for cell typ-
ing: they areinherently multimodal (by providing morphology and con-
nectivity), while the ability to see all cells within a brain (completeness)
isuniquely powerful. Our multiconnectome typing approach (Fig. 6)
provides arobust and efficient way to use such data; cell types that
have passed the rigorous test of across-connectome consistency are
very unlikely to be revised (permanence). We suspect that connectome
data will become the gold standard for cell typing. Linking molecular
and connectomics cell types will therefore be key. One promising new
approachis exemplified by the prediction of neurotransmitter identity
directly from EM images® but many others will be necessary.

Finally, we address the three questionsintroducedintheintroduction.

Canwe simplify the connectome graph?

Celltyping reduces the complexity of the connectome graph. This has
importantimplications for analysis, modelling, experimental work and
developmental biology. For example, we canreduce the 131,811 typed
nodes in the raw connectome graph into a cell type graph with 8,453
nodes; the number of edges is similarly reduced. This should signifi-
cantly aid human reasoning about the connectome. It will also make
numerous network analyses possible as well as substantially reduce the
degrees of freedomin brainscale modelling®*. Itisimportant to note
that, while collapsing multiple cells for a given cell type into a single
nodeisoftendesirable, other use cases such as modelling studies may
stillneed toretain eachindividual cell. However, if key parameters are
determined onaper cell type basis, then the complexity of the resultant
model canbe muchreduced. Arecent study® optimized and analysed a
highly successful model of large parts of the fly visual system with just
734 free parameters by using connectomic cell types.

For Drosophila experimentalists using the connectome, cell typing
identifies groups of cells that probably form functional units. Most of
these are linked though http://virtualflybrain.org/ to the published
literature and in many cases to molecular reagents. Others will be more
easily identified for targeted labelling and manipulation after typing.
Finally, cell typing effectively compresses the connectome, reducing
thebitsrequired to store and specify the graph. For afly-sized connec-
tome, thisis nolonger thatimportant for computational analysis, but
it may be important for brain development. Some® have argued that
evolution has selected highly structured brain connectivity enabling
animals tolearnveryrapidly, but that these wiring diagrams are far too
complexto be specified explicitly in the genome; rather, they must be
compressed through a ‘genomicbottleneck’, which may itself have been
a crucial part of evolving robust and efficient nervous systems. If we
acceptthisargument, lossy compression based on aggregating nodes
with similar cell typelabels, approximately specifying strong edges and
largely ignoring weak edges would reduce the storage requirements
by orders of magnitude and could be a specific implementation of
this bottleneck.

Which edges areimportant?

The question of which of the 15.1 million edges in the connectome to
pay attentiontoiscritical for its interpretation. Intuitively, we assume
that the more synapses that connect two neurons, the more impor-
tant that connection must be. There is some very limited evidence
in support of this assumption correlating anatomical and functional
connectivity®®® (compare inmammals™). In lieu of physiological data,
we postulate that edges that are critical to brain function should be
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consistently found across brains. By comparing connections between
celltypesidentified in three hemispheres, we find that edges stronger
than ten synapses or >0.9% of the target’s inputs have a greater than
90% chance to be preserved (Fig. 4f). This provides a simple heuristic
for determining which edges are likely to be functionally relevant.
Itis also highly consistent with findings from the larval connectome,
inwhich left-right asymmetriesin connectivity vanish after removing
edges weaker than <1.25% (ref. 71). However, note that edges falling
below the threshold might still significantly contribute to the brain’s
function.

We further address an issue that has received little attention (but
seeref. 72): the impact of technical factors (such as segmentation,
proofreading, synapse detection) and biological variability on
the final connectome and how to compensate for it. In our hands,
a model of technical noise could explain up to 30% difference in
edge weights. While this model was made specifically for the two
hemispheres of FlyWire, it highlights the general point that a firm
understanding of all sources of variability will be vital for the young
field of comparative connectomics to distinguish real and artificial
differences.

Have we collected a snowflake?

Thefield of connectomics haslongbeen criticized for unavoidably low
n”™ raising the question of whether the brain of asingle specimen is
representative for all. For insects, there is alarge body of evidence for
morphological and functional stereotypy, although this informationis
available for only aminority of neurons and much less is known about
stereotyped connectivity'®”>’, For vertebrate brains, the situation s
less clear again; itis generally assumed that subcortical regions will
be more stereotyped, but cortex also has conserved canonical micro-
circuits” and recent evidence has shown that some cortical elements
canbe genetically and functionally stereotyped’. Given how critical
stereotypy is for connectomics, itisimportant to check whether that
premise actually still holds true at the synaptic resolution.

For the fly connectome, the answer to our question is actually both
more nuanced and more interesting than weinitially imagined. Based
onconservation of edges between FlyWire and hemibrain hemispheres,
over 50% of the connectome graph is a snowflake. Of course, these
non-reproducible edges are mostly weak. Our criterion for strong
(highly reliable) edges applies to between 7-16% of edges but 50-70%
of synapses.

We previously showed that the early olfactory system of the fly is
highly stereotyped in both neuronal number and connectivity*’. That
study used the same EM datasets—FAFB and the hemibrain—but was
limited in scope as only manual reconstruction in FAFB was then avail-
able. We now analyse brain-wide data from two brains (FlyWire and the
hemibrain) and three hemispheres to address this question and find
a high degree of stereotypy at every level: neuron counts are highly
consistent between brains, as are connections above a certain weight.
However, when examining so many neuronsinabrain, we cansee that
cell counts are very different for some neurons; furthermore, neurons
occasionally dosomething unexpected (take a different route or make
anextra branch on one side of the brain). In fact, we hypothesize that
such stochastic differences are unnoticed variability present in most
brains; this is reminiscent of the observation that most humans carry
multiple significant genetic mutations. We did observe one exam-
ple of a substantial biological difference that was consistent across
hemispheres but not brains: the number of the KCg-m neurons in the
mushroom bodies is almost twice as numerous in FlyWire than in the
hemibrain. Notably, we found evidence that the brain compensates for
this perturbation by modifying connectivity (Fig. 5).

In conclusion, we have not collected a snowflake. The core FlyWire
connectome is highly conserved and the accompanying annotations
will be broadly useful across all studies of D. melanogaster. However,
our analyses show theimportance of calibrating our understanding of
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biological (and technical) variability—as has recently been done across
animals in C. elegans®° and across hemispheres in larval Drosophila™”.
This will be crucial when using future connectomes to identify true
biological differences, for example, in sexually dimorphic circuits or
changes due to learning.
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Methods

Annotations

Base annotations. At the time of writing, the general FlyWire anno-
tation system operates in aread-only mode in which users can add
additional annotations for aneuron but cannotedit or delete existing
annotations. Furthermore, the annotations consist of asingle free-form
text field bound to aspatial location. This enabled many FlyWire users
(including our own group) to contribute a wide range of community
annotations, which are reported in our companion paper’ but are not
considered in this study. As it became apparent that acomplete con-
nectome could be obtained, we found that this approach was not a
good fit for our goal of obtaining a structured, systematic and canoni-
cal set of annotations for each neuron with extensive manual cura-
tion. We therefore set up a web database (seatable; https://seatable.
io/) that allowed records for each neuron to be edited and corrected
over time; columns with specific acceptable values were added as
necessary.

Each neuronwas defined by a single pointlocation (also known asa
root point) and its associated PyChunkedGraph supervoxel. Root IDs
were updated every 30 min by a Python script based on the fafbseg
package (Table 1) to account for any edits. The canonical point for the
neuronwas either alocationonalarge-calibre neurite within the main
arbour of the neuron, a location on the cell body fibre close to where
it entered the neuropil or a position within the nucleus as defined by
the nucleus segmentation table®. The former was preferred as seg-
mentation errors in the cell body fibre tracts regularly resulted in the
wrong soma being attached to a given neuronal arbour. These soma
swap errors persisted late into proofreading and, when fixed, resulted
in annotation information being attached to the wrong neuron until
thisin turnwas fixed.

We also note that our annotations include anumber of non-neuronal
cells/objects such as glia cells, trachea and extracellular matrix that
others might find useful (superclass not_a_neuron; listed in Supple-
mentary Data 2).

Soma position and side. Besides the canonical root point, the soma
position was recorded for all neurons with a cell body. This was either
based on curating entries in the nucleus segmentation table (removing
duplicates or positions outside the nucleus) or onselecting alocation,
especially when the cell body fibre was truncated and no soma could
be identified in the dataset. These somalocations were critical for a
number of analyses and also allowed a consistent side to be defined
for each neuron. Thiswas initialized by mapping all soma positions to
the symmetricJRC2018F template and then using a cutting plane at the
midline perpendicular to the mediolateral (x) axis to define left and
right. However, all soma positions within 20 pm of the midline plane
were thenmanually reviewed. The goal was to define a consistent logical
soma side based on examination of the cell body fibre tracts entering
thebrain; this ultimately ensured that cell types present, for example,
inone copy per brain hemisphere, were always annotated so that one
neuron wasidentified asthe left and the other the right. Inasmall num-
ber of cases, for example, for the bilaterally symmetric octopaminergic
ventral unpaired medial neurons, we assigned side as ‘central’.

For sensory neurons, side refers to whether they enter the brain
through the left or the right nerve. In a small number of cases we
could not unambiguously identify the nerve entry side and assigned
sideas‘na’.

Biological outliers and sample artefacts. Throughout our proofread-
ing, matching and cell typing efforts, we recorded cases of neurons
that we considered to be biological outliers or showed signs of sample
preparation and/or imaging artefacts.

Biological outliers range from small additional/missing branches
to entire misguided neurite tracks, and were typically assessed within

the context of agiven cell type and best possible contralateral matches
within FlyWire and/or the hemibrain. When biological outliers were
suspected, careful proofreading was undertaken to avoid erroneous
merges or splits of neuron segmentation.

Sample artefacts come in two flavours:

(1) A small number of neurons exhibit a dark, almost black cytosol,
which causedissuesin the segmentation as well as synapse detection.
This effectis oftenrestricted to the neurons’ axons. We consider these
sample artefacts because it is not always consistent within cell types.
For example, the cytosol in the axons of DM3 adPN is dark on the left
and normal light onthe right. Because the dark cytosol leads to worse
synapse detection, probably due to lower contrast between the cyto-
sol and synaptic densities, we typically excluded neurons (or neuron
types) withsample artefacts from connectivity analyses. Anecdotally,
this appears to happen atamuch higher frequencyinsensory neurons
compared with in brain-intrinsic neurons.

(2) Some neurons are missing large arbours (for example, a whole
axon or dendrite) because amain neurite suddenly ends and cannot be
traced any further. This typically happens in commissures where many
neurites co-fasculate to cross the brain’s midline. In some but not all
cases, we were able to bridge those gaps and find the missing branch
through left-right matching. Where neurons remained incomplete,
we marked them as outliers.

Whether aneuronrepresentsabiological outlier or exhibits sample
preparation/segmentation artefactsis recorded in the status column of
ourannotations as ‘outlier_bio’and‘outlier_seg’, respectively. Note that
these annotations are probably less comprehensive for the opticlobes
than for the central brain. Examples plus quantification are presented
in Extended Data Fig. 5.

Hierarchical annotations. Hierarchical annotations include flow,
superclass, class (plus a subclass field in certain cases) and cell type.
The flow and superclass were generally assigned based on aninitial
semi-automated approach followed by extensive and iterative manual
curation. See Supplementary Table 3 for definitions and the sections
below for details on certain superclasses.

Based onthe superclasses we define two useful groupings which are
used throughout the main text:

Central brain neurons consist of all neurons with their somatain the
central brain defined by the five superclasses: central, descending,
visual centrifugal, motor and endocrine.

Central brainassociated neurons furtherinclude superclasses: visual
projection neurons (VPNs), ascending neurons and sensory neurons
(but omit sensory neurons with cell class: visual).

Cell classes in the central brain represent salient groupings/terms
thathavebeenpreviously usedin theliterature (examples are provided
in Supplementary Table 3). For sensory neurons, the class indicates
their modality (where known). For optic-lobe-intrinsic neurons cell
class indicates their neuropil innervation: for example, cell class ‘ME’
are medullalocal neurons, ‘LA>ME’ are neurons projecting from the
lamina to the medulla and ‘ME>LO.LOP’ are neurons projecting from
the medulla to bothlobula and lobula plate.

Hemilineage annotations. Central nervous system lineages were
initially mapped for the third instar larval brain, where, for each line-
age, the neuroblast of origin and its progeny are directly visible® ",
Genetic tools that allow stochastic clonal analysis® have enabled
researchers to visualize individual lineages as GFP-marked ‘clones’.
Clones reveal the stereotyped morphological footprint of alineage, its
overall ‘projection envelope’®, as well as the cohesive fibre bundles—
hemilineage-associated tracts (HATs)—formed by neurons belonging
toit. Using these characteristics, lineages could be alsoidentified in the
embryoand early larva®®, as well asin pupae and adults®>**58 HATs
can be readily identified in the EM image data, and we used them, in
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conjunction with clonal projection envelopes, to identify hemilineages
inthe EM dataset through a combination of the following methods:

(1) Visual comparison of HATs formed by reconstructed neu-
rons in the EM, and the light microscopy map reconstructed from
anti-Neuroglian-labelled brains®>***, In cross-section, tracts typi-
cally appear as clusters of 50-100 tightly packed, rounded contours
of uniform diameter (-200 nm), surrounded by neuronal cell bodies
(whensectioned in the cortex) or irregularly shaped terminal neurite
branches and synapses (when sectioned in the neuropil area; Fig. 2c).
The pointofentry and trajectory of aHAT in the neuropil is character-
istic for ahemilineage.

(2) Matching branching pattern of reconstructed neurons with the
projectionenvelope of clones: as expected from the light microscopy
map based on anti-Neuroglian-labelled brains®, the majority of hemi-
lineage tracts visible in the EM dataset occur in pairs or small groups
(3-5). Within these groups, individual tracts are often lined by fibres
of larger (and more variable) diameter, as shown in Fig. 2c. However,
the boundary between closely adjacent hemilineage tracts is often
difficult to draw based on the EM image alone. In these cases, visual
inspection and quantitative comparison of the reconstructed neu-
rons belonging to a hemilineage tract with the projection envelope of
the corresponding clone, which can be projected into the EM dataset
through Pyroglancer (Table 1), assists in properly assigning neurons
to their hemilineages.

(3) Identifying homologous HATs across three different hemispheres
(left and right of FlyWire, hemibrain): by comparison of morphology
(NBLAST?®), as well as connectivity (assuming thathomologous neurons
share synaptic partners), we were able to assign the large majority of
neurons to specific HATs that matched in all three hemispheres.

In the existing literature, two systems for hemilineage nomencla-
ture are used: Ito/Lee®** and Hartenstein®"2, Although these systems
overlapinlarge parts, some lineages have been described in only one
but not the other nomenclature. In the main text, we provide (hemi)
lineages according to the ItoLee nomenclature for simplicity. Below
andinthe Supplementary Information, we also provide both names as
ItoLee/Hartenstein, and the mapping between the two nomenclatures
is provided in Supplementary Data 3. From previous literature, we
expected atotal of around 119 lineages in the central brain, including
the gnathal ganglia (GNG)*3*# Indeed, we were able to identify all 119
lineages based on light-level clones and tracts, as well as the HATs in
FlyWire. Moreover, we found one lineage, LHp3/CP5, which could notbe
matchedtoany clone. Thus, together, we have identified 120 lineages.

By comprehensively inspecting the hemilineage tracts originally in
CATMAID and thenin FlyWire, we can now reconcile previous reports.
Specifically, newtorefs. 33,34 (ItoLee nomenclature) are: CREI1/DALv3,
LHp3/CP5, DILP/DILP, LALal/BAlp2, SMPpm1/DPMm2 and VLPI5/BLVa3_
or_4—we gave these neurons lineage names according to the naming
schemein refs. 33,34. New to ref. 31 (Hartenstein nomenclature) are:
SLPal5/BLAdS, SLPav3/BLVa2a, LHI3/BLVa2b, SLPpl3/BLVa2c, PBpl/
CM6é, SLPpl2/CP6, SMPpd2/DPLc6, PSp1/DPMI2 and LHp3/CP5—we
named these unitsaccordingto the Hartenstein nomenclature naming
scheme. We did not take the following clones fromref. 33 into account
for the total count of lineages/hemilineages, because they originate
in the optic lobe and their neuroblast of origin has not been clearly
demonstrated in the larva: VPNd2, VPNd3, VPNd4, VPNp2, VPNp3,
VPNp4, VPNv1, VPNv2 and VPNv3.

Notably, although light-level clones from refs. 33,34 match very well
the great majority of the time, sometimes clones with the same name
only match partially. For example, the AOTUv1_ventral/DALcm2_ventral
hemilineage seems to be missing in the AOTUv1/DALcm2 clone in the
Ito collection®. There appears to be a similar situation for the DM4/
CM4, EBal/DALv2 and LHI3/BLVa2b lineages. When there is a conflict,
we have preferred clones as described in ref. 34.

For calculating the total number of hemilineages, to keep the
inclusion criteria consistent with the lineages, we included the type

Illineages (DL1-2/CP2-3, DM1-6/DPMm1, DPMpm1, DPMpm2, CM4, CM1,
CM3) by counting the number of cell body fibre tracts, acknowledging
that they may or may not be hemilineages. Neuroblasts of type Il line-
ages, instead of generating ganglion mother cells that each divide once,
amplify their number, generating multiple intermediate progenitors
that in turn continue dividing like neuroblasts?®*%°°°, It has not been
established how the tracts visible in type Il clones (and included in
Extended Data Fig. 3 and Supplementary Data 3 and 4) relate to the
(large number of) type Il hemilineages.

There are also 3 type I lineages (VPNI&d1/BLAI2, VLPI2/BLAv2 and
VLPp&I1/DPLpv) with more than two tracts in the clone; we included
these additional tracts in the hemilineages provided in the text. With-
out taking these type I and type Il tracts into account, we identified
141 hemilineages.

A minority of neurons in the central brain could not reliably be
assigned to a lineage. These mainly include the (putative) primary
neurons (3,780). Primary neurons, born in the embryo and already
differentiated in the larva, form small tracts with which the second-
ary neurons become closely associated”. In the adult brain, morpho-
logical criteria that unambiguously differentiate between primary and
secondary neurons have not yet been established. In cases in which
experimental evidence exists?, primary neurons have significantly
larger cellbodies and cell body fibres. Loosely taking these criteriainto
account we surmise that a fraction of primary neurons forms part of
the HATs defined as described above. However, aside from the HATs,
we see multiple small bundles, typically close to but not contiguous
withthe HATs, which we assume to consist of primary neurons. Overall,
these small bundles contained 3,780 neurons, designated as primary
or putative primary neurons.

Hemilineage annotations in hemibrain. Hemilineage annotations
in hemibrain were generated using the hemilineage annotations in
FlyWire as the ground truth. For each hemilineage, we first obtained
potential hemibrain matches to FlyWire neurons using a combina-
tion of NBLAST*® scores and cell body fibre/cell type annotations. We
then clustered neuronsin all three hemispheres (FlyWire left, FlyWire
right, hemibrain potential candidates) by morphology, and went
through the clusters, to make sure that the hemilineage annotations
correspond across brains at the finest level possible. To ensure that no
neuronswithin a hemilineage were missed, we examined the cell body
fibre bundles of each hemilineage in the hemibrain at the EM level. To
further guarantee the completeness of hemilineage annotations, we
inventoried all right hemisphere neurons in hemibrain with acell type
annotation, to ensure allneurons with atype annotation were assigned
ahemilineage annotation where possible.

Morphological groups. Within ahemilineage, subgroups of neurons
often share distinctive morphological characteristics. These morpho-
logical groups were identified for all hemilineages as follows. Neurons
from FlyWire and hemibrain were transformed into the same hemi-
sphere and pairwise NBLAST scores were generated for all neurons
withinahemilineage. Intrahemilineage NBLAST scores were then clus-
tered using HDBSCAN??, an adaptive algorithm that does not require a
uniformthreshold across all clusters, and that does not assume spheri-
caldistribution of datapointsinacluster, compared to other clustering
algorithms such as k-means clustering.

Totest the robustness of the morphological groups, wereranthe above
analysis across one, two or three hemispheres. This treatment some-
times gave slightly different results. However, some groups of neurons
consistently co-clustered across the different hemispheres; we termed
these ‘persistent clusters’. Early-born neurons, which are often morpho-
logically unique, frequently failed to participate in persistent clusters,
and were omitted from further analysis. We linked these persistent clus-
ters across hemispheres using two- and three-hemisphere clustering:
for example, when clustering FlyWire left and FlyWire right together
for hemilineage AOTUv3_dorsal, the TuBu neurons from both the left
and right hemispheres would fall into one cluster, which we termed a



morphological group. Morphological groups are therefore defined by
consistentacross-hemisphere clustering. When neurons of agiven hemi-
lineage were sufficiently contained by the hemibrain volume, all three
hemispheres (two from FlyWire and one from hemibrain) were used; oth-
erwise, the two hemispheres from FlyWire were used. As we prioritized
consistency across 1,2 and 3 hemisphere clustering, aminority of neurons
with a hemilineage annotation do not have a morphological group. For
example, ifneurontype A clusters with type Bin one-hemisphere cluster-
ing, but clusters with type C (and not B) in two-hemisphere clustering,
then type A will not have a morphological group annotation.

After generating the morphological groups, we cross-checked these
annotations against existing cross-identified hemibrain types and
(FlyWire only) cell types. In a minority of cases, neurons of one hemi-
brain/cell type were annotated with multiple morphological groups.
This occasionally reflected errors in assigning types, which were cor-
rected; and others where individual neurons fromatype were singled
out due to additional branches/reconstruction issues. We therefore
manually corrected some morphological group annotations to make
them correspond maximally with the hemibrain/cell type annotations.

Overall, we divide hemilineagesin each hemisphereinto 528 morpho-
logical groups, with hemilineages typically having 1-6 morphological
groups (10/90 quantile) and witheach morphological group containing
2-52neuronsin each hemisphere (10/90 quantile).

Cell typing

Using methods described in detail in the sections below, we defined cell
typesfor 96.4% of all neurons in the brain—98% and 92% for the central
brain and optic lobes, respectively. The remaining 3.6% of neurons
were largely (1) optic lobe local neurons for which we could not find a
prior in existing literature or (2) neurons without clear contralateral
pairings, including anumber of neurons on the midline.

About 21% of our cell type annotations are principally derived from
the hemibrain cell type matching effort (see the section below). The
remainder was generated either by comparing to existing literature
(forexample, in case of optic lobe cell types or sensory neurons) and/or
by finding left/right balanced clusters through a combination of
NBLAST and connectivity clustering (Fig. 6 and Extended Data Figs. 8
and 9). New types were given asimple numerical cross-brainidentifier
(for example, CBOOO1) or, in the case of ascending neurons (ANs)/
descending neurons(DNs), a more descriptive identifier (see the sec-
tion below) as a provisional cell type label. A flow chart summary is
provided in Extended Data Fig.12.

For provenance, we provide two columns of cell types in our Sup-
plementary Data:

hemibrain_type always refers to one or more hemibrain cell types;
in rare occasions where a matched hemibrain neuron did not have a
type, we recorded body IDs instead.

cell_type contains types that are either not derived from the hemi-
brain or that represent refinements (for example, a split or retyping)
of hemibrain types.

Neurons can have both a cell_type and a hemibrain_type entry, in
which case, the cell_type represents a refinement or correction and
should take precedence. This generates the reported total count of
8,453 terminal cell types and includes 3,643 hemibrain-derived cell
types (Fig. 3h (right side of the flow chart)) and 4,581 proposals for
new types. New types consist of 3,504 CBXXXX types, 65 new visual
centrifugal neuron types (‘c’ prefix, for example, cL08), 173 new VPN
types (‘¢’ suffix, for example, LTe07), 602 new AN types (‘AN_" or ‘SA_’
prefix, for example, AN_SMP_1) and 237 new DN types (‘e’ suffix, for
example, DNge094). The remaining 229 types are cell types known from
other literature, for example, columnar cell types of the optic lobes.

Hemibrain cell type matching. We first used NBLAST?® to match
FlyWire neurons to hemibrain cell types (see ‘Morphological com-
parisons’ section). From the NBLAST scores, we extracted, for each

FlyWire neuron, alist of potential cell type hits using all hitsin the 90th
percentile. Individual FlyWire neurons were co-visualized with their
potential hits in neuroglancer (see the ‘Data availability’ and ‘Code
availability’ sections) and the correct hit (if found) was recorded. In
difficult cases, we would also inspect the subtree of the NBLAST den-
drograms containing the neuronsin questionstoinclude local cluster
structure in the decision making (Extended Data Fig. 4e). In cases in
whichtwo or more hemibrain cell types could not be cleanly delineated
in FlyWire (that is, there were no corresponding separable clusters)
we recorded composite (many:1) type matches (Fig. 3i and Extended
DataFigs.4gand12).

When a matched type was either missing large parts of its arbours
due to truncation in the hemibrain or the comparison with the Fly-
Wire matches suggested closer inspection was required, we used
cross-brain connectivity comparisons (see the section below) to
decide whether to adjust (split or merge) the type. A merge of two or
more hemibrain types was recorded as, for example, SIP078,SIP0O80,
while a split would be recorded as PS090a and PS090b (that is, with
alower-case letter as a suffix). In rare cases in which we were able to
find a match for an untyped hemibrain neuron, we would record the
hemibrainbody ID as hemibrain type and assign a CBXXXX identifier as
celltype.

Finally, the hemibrainintroduced the concept of morphology types
and ‘connectivity types™. The latter represent refinements of the former
and differ only in their connectivity. For example, morphology type
SADOS51 splitsinto two connectivity types: SAD051_aand SADOS51_b, for
whichthe_{letter}indicatesthat these are connectivity types. Through-
out our FlyWire~hemibrain matching efforts we found connectivity
types hard to reproduce and our default approach was to match only
up tothe morphology type.Insome cases, for example, antennal lobe
local neuron types like ILN2P_a and ILN2P_b, we were able to find the
corresponding neurons in FlyWire.

Notethat,innumerouscasesthatwereviewedbut remainunmatched,
we encountered what we call ambiguous ‘daisy-chains’: imagine four
fairly similar cell types, A, B, C and D. Often these adjacent cell types
represent a spectrum of morphologies where A is similar to B, B is
similar to C and Cis similar to D. The problem now is in unambigu-
ously telling A from B, B from C and C from D. But, at the same time,
A and D (on the opposite ends of the spectrum) are so dissimilar that
we would not expect to assign them the same cell type (Fig. 3k and
Extended Data Fig. 4h). These kinds of graded or continuous varia-
tion have been observed in a number of locations in the mammalian
nervous system and represent one of the classic complications of cell
typing'. Absent other compelling information that can clearly separate
these groups, the only reasonable option would seem to be to lump
themtogether. As this would erase numerous proposed hemibrain cell
types, the de facto standard for the fly brain, we have been conser-
vative about making these changes pending analysis of additional
connectome data’.

Hemibrain cell type matching with connectivity. In our hemibrain
type matching efforts, about 12% of cell types could not be matched
1:1.Inthese cases, we used across-dataset connectivity clustering (for
example, to confirm the split of a hemibrain type or a merger of mul-
tiple cell types). To generate distances, we first produced separate
adjacency matrices for each of the three hemispheres (FlyWire left,
right and hemibrain). In these matrices, each row is a query neuron
and each column is an up- or downstream cell type; the values are the
connection weights (thatis, number of synapses). We then combine the
three matrices along the first axis (rows) and retain only the cell types
(columns) that have been cross-identified in allhemispheres. From the
resulting observation vector, we calculate a pairwise cosine distance.
Itisimportant to note that this connectivity clustering depends abso-
lutely on the existence of a corpus of shared labels between the two
datasets—without such shared labels, which were initially defined by
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morphological matching as described above, connectivity matching
cannot function.

This pipeline isimplemented in the coconatfly package (Table 1),
which provides a streamlined interface to carry out such cluster-
ing. For example the following command can be used to see if the
types given to a selection of neurons in the Lateral Accessory Lobe
(LAL) are robust: cf_cosine_plot(cf_ids('/type:LALO(08]09]10]42)’,
datasets=c(“flywire”, “hemibrain”))).

Anoptionalinteractive mode allows for efficient exploration within
aweb browser. For further details and examples, see https://natverse.
org/coconatfly/.

Defining robust cross-brain cell types. In Fig. 6, we used two kinds
of distance metrics—one calculated from connectivity alone (used for
FC1-3;Fig. 6e-g) and asecond combining morphology + connectivity
(used for FB1-9; Fig. 6h and Extended Data Fig. 8b-f) to help define ro-
bust cross-brain cell types. The connectivity distance is as describedin
the ‘Hemibrain cell type matching with connectivity’ section above). We
note that the central complex retyping used FlyWire connectivity from
the 630 release. The combined morphology + connectivity distances
were generated by taking the sum of the connectivity and NBLAST
distances. Connectivity-only works wellin the case of cell types that do
not overlap in space but instead tile a neuropil. For cell types that are
expectedtooverlapinspace, we find that adding NBLAST distancesis
auseful constraint to avoid mixing of otherwise clearly different types.
Fromthe distances, we generated adendrogram representation using
the Ward algorithm and then extracted the smallest possible clusters
that satisfy two criteria: (1) each cluster must contain neurons from
all three hemispheres (hemibrain, FlyWire right and FlyWire left); (2)
within each cluster, the number of neurons from each hemisphere must
be approximately equal.

We call such clusters ‘balanced’. The resulting groups were then
manually reviewed.

Defining new provisional cell types. After the hemibrain type match-

ing effort, around 40% of central brain neurons remained untyped.

This included both neurons mostly or entirely outside the hemibrain

volume (for example, from the GNG) but also neurons for which the

potential hemibrain type matches were too ambiguous. To provide
provisional cell types for these neurons, we ran the same cell typing
pipeline described in the ‘Defining robust cross-brain cell types’ sec-
tion above on the two hemispheres of FlyWire alone. In brief, we pro-
duced amorphology + connectivity co-clustering for each individual
hemilineage (neurons without a hemilineage such as putative primary
neuronswere clustered separately) and extracted ‘balanced’ clusters,

which were manually reviewed (Fig. 6i,j and Extended Data Fig. 9).

Reviewed clusters were then used to add new or refine existing cell

and hemibrain types:

« Clusters consisting entirely of previously untyped neurons were given
aprovisional CBXXXX cell type.

« Clusters containing a mix of hemibrain-typed and untyped neurons
typically meant that, after further investigation, the untyped neurons
were given the same hemibrain type.

» Hemibrain types split across multiple clusters were double checked
(forexample, by running atriple-hemisphere connectivity clustering),
which oftenledto asplit of the hemibraintype; for example, SMP408
was splitinto SMP408a-d.

« Inrarecases, clusters contained amix of two or more hemibrain types;
these were double checked and the hemibrain types corrected (for
example, by merging two or more hemibrain types, or by removing
hemibrain type labels).

To validate a subset of the new, provisional cell types, we re-ran the
clustering using three hemispheres (FlyWire + hemibrain) on 25
cross-identified hemilineages that are not truncated in the hemibrain

(Extended Data Fig. 9). The procedure was otherwise the same as for
the double-clustering.

Optic lobe cell typing. We provide cell type annotations for >92% of
neuronsinbothopticlobes. The vast majority of these types are based
onpreviousliterature*>***°, We started the typing effort by annotating
well-known large tangential cells (for example, Am1 or LPi12), VPNs
(for example, LT1s) as well as photoreceptor neurons. From there, we
followed two general strategies, sometimes in combination: (1) for
neurons with known connectivity fingerprints, we specifically hunted
upstream or downstream of neurons of interest (for example, looking
for T4aneurons upstream of LPi12). (2) We ran connectivity clustering
asdescribed above onboth opticlobes combined. Clusters were manu-
ally reviewed and matched against literature. This was doneiteratively;
witheach round adding new or refining existing cell types to inform the
nextround of clustering. Clusters that we could not confidently match
against a previously described cell type were assigned a provisional
(CBXXXX) type.

This effort was carried out independently of other FlyWire optic
lobe intrinsic neuron typing, including ref. 23; the sole exception was
the Mil cell type, which was initially based on annotations reported
previously'®and then reviewed. For this reasonref. 100 should be cited
for the Mil annotations. Note that our typing focuses on previously
reported cell types rather than defining new ones, but covers both optic
lobes to enable accurate typing of visual project neurons (by defining
their key inputs). For the 38,461 neurons of the right optic lobe (for
which a comparison is possible), we report 156 cell types for 35,567
neurons compared with 229 cell types for 37,345 neurons in ref. 23.

VPNs and VCNs. Similar to cell typing in the central brain, a significant
proportion of VPN (61%) and visual centrifugal neuron (VCN) (60%)
types are derived from the hemibrain (see the ‘Hemibrain cell type
matching’section). These annotations are listed in the hemibrain_type
columninthe Supplementary Data.

To assign cell types to the remaining neurons and in some cases also
to refine existing hemibrain types, we ran a double-hemisphere (Fly-
Wire left-right) co-clustering. For VCNs, this was done as part of the
per-hemilineage morphology-connectivity clustering described in
the ‘Defining new provisional cell types’ section above. For VPNs of
whichthe dendrites typically tile the optic neuropils, we generated and
reviewed aseparate connectivity-only clustering on all VPNs together.
Groups extracted from this clustering were also cross-referenced with
new literature from parallel typing efforts’®*'® and those new cell type
names were preferred for the convenience of the research community.
In cases in which literature references could not be found, systematic
names were generated de novo using the schemata below.

For VPNs the nomenclature follows the format [neuropil][C/T][e]
[XX], where neuropil refers to regions innervated by VPN dendrites; C/T
denotes columnar versus tangential organization; eindicatesidentifica-
tion through EM; and XX represents a zero padded two digit number.

Forexample: ‘MTe47’ for ‘medulla-tangential 47"

For VCNs, the nomenclature follows the format [c][neuropil ][ XX],
where c denotes centrifugal; neuropil refers to regions innervated by
VCN axons; and XX represents a zero padded two digit number.

For example, ‘cM12’ for ‘centrifugal medulla-targeting 12",

Note that new names were also given to non-canonical, generic hemi-
braintypes, suchasIB006. All new names are recorded inthe cell_type
columnin the Supplementary Data.

The majority of VPNs (99.6%) and VCNs (98.3%) were assigned to spe-
cifictypes.Only 29 VPNs and 9 VCNs could not be confidently assigned
acelltype and were therefore left untyped.

Sensory and motor neurons. We identified all non-visual sensory and
motor neurons entering/exiting the brain through the antennal, eye,
occipital and labial nerves by screening all axon profilesinagivennerve.
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Sensory neurons were further cross-referenced to existing literature
to assign modalities (through the class field) and, where applicable,
acell type. Previous studies have identified almost all head mecha-
nosensory bristle and taste peg mechanosensory neurons'®®in the left
hemisphere (at the time of publication: right hemisphere). Gustatory
sensory neurons were previously identified in ref. 103 and Johnston’s
organneuronsinrefs.104,105in a version of the FAFB that used manual
reconstruction (https://fafb.catmaid.virtualflybrain.org). Those neu-
rons were identified in the FlyWire instance by transformation and
overlay onto FlyWire space as described previously'®.

Johnston’s organ neuronsinthe right hemisphere were characterized
based oninnervation of the major AMMC zones (A, B, C, D, Eand F), but
not further classified into subzone innervation as shown previously'*.
Other sensory neurons (mechanosensory bristle neurons, taste peg
mechanosensory neurons and gustatory sensory neurons) in the right
hemisphere were identified through NBLAST-based matching of their
mirrored morphology to the left hemisphere and expert review. Olfac-
tory, thermosensory and hygrosensory neurons of the antennal lobes
were identified through their connectivity to cognate uniglomerular
projection neurons and NBLAST-based matching to previously identi-
fied hemibrain neurons*®1¢,

Visual sensory neurons (R1-6,R7-8 and ocellar photoreceptor neu-
rons) were identified by manually screening neurons with pre-synapse
in either the lamina, the medulla and/or the ocellar ganglia®.

ANs and DNs. We seeded all profiles in a cross-section in the ven-
tral posterior GNG through the cervical connective to identify all
neurons entering and exiting the brain at the neck. We identified
all DNs based on the following criteria: (1) soma located within the
brain dataset; and (2) main axon branch leaving the brain through
the cervical connective.

We next classified the DNs based on their soma location according
to a previous report'”’. In brief, the soma of DNa, DNb, DNc and DNd
islocated in the anterior half (a, anterior dorsal; b, anterior ventral; c,
in the pars intercerebralis; d, outside cell cluster on the surface) and
DNp in the posterior half of the central brain. DNg somas are located
inthe GNG.

To identify DNs described in ref. 107 in the EM dataset, we trans-
formed the volume renderings of DN GAL4 lines into FlyWire space.
Displaying EM and LM neurons in the same space enabled accurate
matching of closely morphologically related neurons. For DNs without
available volume renderings, we identified candidate EM matches by
eye, transformed them into JRC2018U space and overlaid them onto
the GAL4 or Split GAL4 line stacks (named in ref. 107 for that type) in
FIJI for verification. Using these methods, we identified all but two
(DNdO1 and DNg25) in FAFB/FlyWire and annotated their cell type
with the published nomenclature. Allother unmatched DNs received a
systematic cell type consisting of their somalocation, an ‘e’ for EM type
and a three digit number (for example, DNae0O01). A detailed account
and analysis of DNs has been published'®® separately.

ANs were identified based on the following criteria: (1) no somain
the brain; and (2) main branch entering through the neck connective
(note that some ANs make a dendrite after entry through the neck
connective and then an axon).

Todistinguish sensory ascending (SA) neurons from ANs, we analysed
SA neuron morphology in the male VNC dataset MANC!%*_First, we
identified which longitudinal tract they travel to ascend to the brain™
and then found GAL4 lines matching their VNC morphology. We next
identified putative matching axonsin the brain dataset by morphology
and tract membership. A detailed description of this process and the
lines used has been published separately'.

FAFB laterality
In the fly brain, the asymmetric body is reproducibly around 4 times
larger ontheright hemisphere thanontheleft"? ™ exceptinrare cases

of situsinversus™*', However, completion of the FlyWire whole-brain
connectome and associated cell typing showed the asymmetric body
tobelarger onthe apparentleft side ofthe brainrather thantheright,
suggesting aninversion of the left-right axis during initial acquisition
of EMimages comprising the FAFB dataset”. This hypothesis was con-
firmed by comparing of FAFB sample grids imaged using differential
interference contrast microscopy to low-magnification views of cor-
responding EM image mosaics using CATMAID or neuroglancer. Grids
were chosen with particularly obvious staining and sample prepara-
tionartefacts visible bothin the differential interference contrast and
low-magnification EM images (Extended Data Fig. 1), confirming that
aleft-right axis inversion had taken place during image acquisition.

Owing to the extensive post-processing of the FAFB dataset and
derived datasets (for example, transformation fields, image mosaic-
ingand stack registrations to produce aligned volumes, segmentation
supervoxels, proofread neuron segmentations, skeletons, meshes and
myriad 3D visualizations), which had been undertaken at the time at
which this error was discovered, we deemed it impractical to correct
thiserror at the raw datalevel. Instead, we break aconvention of pres-
entation: usually, frontal views of the fly brain place the fly’s right on
the viewer’s left. Instead, in this paper, frontal views of the fly brain
place the fly’s right on the viewer’s right—similar to the view one has
of oneself while looking in a mirror. This maintains consistency with
past publications. However, note that all labels of left and right in the
figuresin this paper, our companion papers, the supplemental annota-
tions and associated digital repositories (for example, https://codex.
flywire.ai, FAFB/FlyWire CATMAID) have been corrected toreflect the
error during dataacquisition. In these resources, aneuron labelled as
being on the leftisindeed on the left of the fly’s brain.

For consistency with visualizations and datasets obeying the
standard convention (fly’s right on viewer’s left), FlyWire data can
be mirrored. To facilitate this, we provide tools to digitally mirror
FAFB-FlyWire data using the Python flybrains (https://github.com/
navis-org/navis-flybrains) or natverse nat.jrcbrains (https://github.
com/natverse/nat.jrcbrains) packages (Extended DataFig. 1c), through
the navis.mirror_brain() and nat.jrcbrains::mirror_fafb() function calls,
respectively. See the fafbseg-py documentation for a tutorial on
mirroring.

We also provide a neuroglancer scene in which both FlyWire and
hemibrain dataare displayedinthe correct orientation: https://tinyurl.
com/flywirehbflip783. In this scene, a frontal view has both FAFB and
hemibrain RHS to the left of the screen, obeying the standard conven-
tion. The scene displays the SA1 and SA2 neurons, which target the
rightasymmetric body for both FlyWire and the hemibrain, confirming
thatthe RHS for both datasets has been superimposed (compare with
Extended Data Fig. 1a).

Morphological comparisons

Throughout our analyses, NBLAST>® was used to generate morpho-
logical similarity scores between neurons—for example, for matching
neurons between the FlyWire and the hemibrain datasets, or for the
morphological clustering of the hemilineages. Inbrief, NBLAST treats
neurons as point clouds with associated tangent vectors describing
directionality, so called dotprops. For a given query->target neuron
pair, we perform a k-nearest neighbours search between the two point
clouds andscore each nearest-neighbour pair by their distance and the
dot product of their vector. These are then summed up to compute the
final query~>target NBLAST score. Itisimportant to note that direction
ofthe NBLAST matters, thatis, NBLASTing neurons A>B#B~>A. Unless
otherwise noted, we use the minimum between the forward and reverse
NBLAST scores.

The NBLAST algorithmisimplementedinboth navis and the natverse
(Table 1). However, we modified the navis implementation for more
efficient parallel computation in order to scale to pools of more than
100,000 neurons. For example, the all-by-all NBLAST matrix for the
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full 139,000 FlyWire neurons alone occupies over 500 GB of memory
(32 bit floats). Most of the large NBLASTs were run on a single cluster
node with 112 CPUs and 1 TB RAM provided by the MRC LMB Scien-
tific Computing group, and took between 1 and 2 days (wall time) to
complete.

Below, we provide recipes for the different NBLAST analyses used
in this paper:

FlyWire all-by-all NBLAST. For this NBLAST, we first generated skel-
etonsusingthe L2 cache.Inbrief, underlying the FlyWire segmentation
isanoctree datastructure where level O represents supervoxels, which
arethenagglomerated over higher levels"®. The second layer (L2) in this
octree represents neurons as chunks of roughly 4 x 4 x 10 um in size,
whichis sufficiently detailed for NBLAST. The L2 cache holds precom-
putedinformation foreach L2 chunk, including arepresentative x/y/z
coordinate in space. We used the x/y/z coordinates and connectivity
between chunks to generate skeletons for all FlyWire neurons (imple-
mented in fafbseg; Table 1). Skeletons were then pruned to remove side
branches smaller than 5 um. From those skeletons, we generated the
dotprops for NBLAST using navis.

Before the NBLAST, we additionally transformed dotprops to the
same side by mirroring those from neurons with side right onto the
left. The NBLAST was then run only in forward direction (query->target)
but, because the resulting matrix was symmetrical, we could generate
minimum NBLAST scores using the transposed matrix: min(4 + A”).

This NBLAST was used to find left-right neuron pairs, define (hemi)
lineages and run the morphology group clustering.

FlyWire—hemibrain NBLAST. For FlyWire, we re-used the dotprops
generated for the all-by-all NBLAST (see the previous section). To ac-
count for the truncation of neurons in the hemibrain volume, we re-
moved points that fell outside the hemibrain bounding box.

For the hemibrain, we downloaded skeletons for all neurons from
neuPrint (https://neuprint.janelia.org) using neuprint-python and
navis (Table 1). In addition to the approximately 23,000 typed neu-
rons, we also included all untyped neurons (often just fragments) for
atotal of 98,000 skeletons. These skeletons were pruned to remove
twigs smaller than 5 um and then transformed from hemibrain into
FlyWire (FAFB14.1) space using a combination of non-rigid trans-
forms™®" (implemented through navis, navis-flybrain and fafbseg;
Table 1). Once in FlyWire space, they were resampled to 0.5 nodes
per um of cable to approximately match the resolution of the Fly-
Wire L2 skeletons, and then turned into dotprops. The NBLAST
was then run both in forward (FlyWire to hemibrain) and reverse
(hemibrain to FlyWire) direction and the minimum between both
were used.

This NBLAST allowed us to match FlyWire left against the hemibrain
neurons. To also allow matching FlyWire right against the hemibrain,
we performed a second run after mirroring the FlyWire dotprops to
the opposite side.

In Fig. 3¢,d, we manually reviewed NBLAST matches. For this, we
sorted hemibrain neurons based on their highest NBLAST score to a
FlyWire neuroninto bins with awidth of 0.1. From each bin, we picked
30 random hemibrain neurons (except for bin 0-0.1 which contained
only 27 neurons in total) and scored their top five FlyWire matches as
to whether a plausible match was among them. In total, this sample
contained 237 neurons.

Cross-brain co-clustering. The pipeline for the morphology-based
across brain co-clustering used in Fig. 6 and Extended Data Fig. 9 was
essentially the same as for the FlyWire-hemibrain NBLAST with two
exceptions: (1) we used high-resolution FlyWire skeletons instead of
the coarser L2 skeletons (see below); and (2) both FlyWire and hemi-
brain skeletons were resampled to 1 node per um before generating
dotprops.

High-resolution skeletonization

In addition to the coarse L2 skeletons, we also generated high-
resolution skeletons that were, for example, used to calculate the total
length of neuronal cable reported in our companion paper’ (149.2 m).
Inbrief, we downloaded neuron meshes (LOD 1) from the flat 783 seg-
mentation (available at gs://flywire_v141_m783) and skeletonized them
using the wavefront method implemented in skeletor (https://github.
com/navis-org/skeletor). Skeletons were thenrerooted to their soma
(if applicable), smoothed (by removing small artifactual bristles on
the backbone), healed (segmentation issues can cause breaks in the
meshes) and slightly downsampled. Amodified version of this pipeline
isimplemented in fafbseg. Skeletons are available for download (see
the ‘Data availability’ and ‘Code availability’ sections).

Connectivity normalization

Throughout this paper, the basic measure of connection strength
is the number of unitary synapses between two or more neurons’;
connections between adult fly neurons can reach thousands of such
unitary synapses> Previous work in larval Drosophila has indicated
that synaptic counts approximate contact area®, which is most com-
monly used in mammalian species when a high-resolution measure of
anatomical connection strength is required. Connectomics studies
alsoroutinely use connection strength normalized to the target cell’s
total inputs’™’®. For example, if neurons i andj are connected by 10
synapses and neuronj receives 200 inputs in total, the normalized
connection weight i tojwould be 5%. A previous study"’ showed that
while absolute number of synapses for a given connection changes
drastically over the course of larval stages, the proportional (that is,
normalized) input to the downstream neuron remains relatively con-
stant™. Importantly, we have some evidence (Fig. 4g) that normalized
connection weights are robust against technical noise (differencesin
reconstruction status, synapse detection). Note that, for analyses of
mushroom body circuits, we use an approach based on the fraction
of the input or output synaptic budget associated with different KC
cell types; this differs slightly from the above definition and will be
detailed in aseparate section below.

Connectivity stereotypy analyses

For analyses on connectivity stereotypy (Fig. 4 and Extended Data

Fig. 6) we excluded a number of cell types:

« KCs, due to the high variability in numbers and synapse densities in
the mushroombody lobes between FlyWire and the hemibrain (Fig. 5
and Extended Data Fig. 7).

« Cell types that exist only on the left but not the right hemisphere of
the hemibrain because our comparison was principally against the
right hemisphere.

« Antennal lobe receptor neurons, because truncation/fragmentation
in the hemibrain causes some ambiguity with respect to their side
annotation.

« Celltypes with members that have been marked as being affected by
sample or imaging artefacts (that is, status ‘outlier_seg’).

* VPNs, as they are heavily truncated in the hemibrain.

Among the remaining types, we used only the 1:1and 1:many but not
the many:1 matches. Takentogether, we used 2,954 (hemibrain) types
for the connectivity stereotypy analyses.

Availability through CATMAID Spaces

To increase the accessibility and reach of the annotated FlyWire con-
nectome, meshes of proofread FlyWire neurons and synapses were
skeletonized and imported into CATMAID, a widely used web-based
tool for collaborative tracing, annotation and analysis of large-scale
neuronal anatomy datasets’?° (https://catmaid.org; Extended Data
Fig.10).Spatial annotations like skeletons are modelled using PostGIS
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data types, a PostgreSQL extension that is popular in the geographic
information system community. This enables us to reuse many existing
toolstowork with large spatial datasets, for example, indexes, spatial
queries and mesh representation.

A publicly available version of the FlyWire CATMAID project is
available online (https://fafb-flywire.catmaid.org). This project uses
anew extension, called CATMAID Spaces (https://catmaid.org/en/
latest/spaces.html), which allows users to create and administer their
own tracing and annotation environments on top of publicly avail-
able neuronal image volumes and connectomic datasets. Moreover,
users can now login through the public authentication service ORCiD
(https://www.orcid.org), so that everyone can log-in on public CAT-
MAID projects. Users can also now create personal copies (Spaces)
of public projects. The user then becomes an administrator, and can
invite other users, along with the management of their permissions
in this new project. Invitations are managed through project tokens,
which the administrator can generate and send to invitees for access
to the project. Both CATMAID platforms can talk to each other and it
is possible toload datafrom the dedicated FAFB-FlyWire server in the
more general Spaces environment.

Metadata annotations for each neuron (root id, cell type, hemilin-
eage, neurotransmitter) were imported for FlyWire project release
783. Skeletons for all 139,255 proofread neurons were generated from
the volumetric meshes (see the ‘High-resolution skeletonization’ sec-
tion) and imported into CATMAID, resultingin 726,831,877 treenodes.
To reduce the import time, skeletons were imported into CATMAID
directly as database inserts through SQL, rather than through public
RESTful APIs. FlyWire root IDs are available as metadata for each neu-
ron, facilitating interchange with related resources such as FlyWire
Codex'. Synapses attached to reconstructed neurons were imported as
CATMAID connector objects and attached to neuron skeletons by doing
aPostgreSQL query tofind the nearest node on each of the partner skel-
etons. Connector objects were linked to postsynaptic partners only if
the downstream neuronwasin the proofread datarelease (180,016,288
connections from the 130,054,535 synapses with at least one partner
inthe proofread set).

Synapse counts

Insect synapses are polyadic, that is, each presynaptic site can be
associated with multiple postsynaptic sites. In contrast to the Jane-
lia hemibrain dataset, the synapse predictions used in FlyWire do
not have a concept of a unitary presynaptic site associated with a
T-bar*. Thus, pre-synapse counts used in this paper do not represent
the number of presynaptic sites but rather the number of outgoing
connections.

In Drosophila connectomes, reported counts of the inputs
(post-synapses) onto a given neuron are typically lower than the true
number. This is because fine-calibre dendritic fragments frequently
cannot be joined onto the rest of the neuron, instead remaining as
free-floating fragments in the dataset.

Technical noise model

To model the impact of technical noise such as proofreading status
and synapse detection on connectivity, we first generated a fictive
‘100%’ ground-truth connectivity. We took the connectivity between
cell-typed left FlyWire neurons and scaled each edge weight (the num-
ber of synapses) by the postsynaptic completionratesin the respective
neuropil. Forexample, all edge weights in the left mushroombody calyx
(CA), which has a postsynaptic completion rate of 52.5%, were scaled
by afactor of100/52.5=1.9.

In the second step, we simulated the proofreading process by ran-
domly drawing (without replacement) individual synaptic connections
fromthefictive ground-truth until reaching a target completionrate.
We further simulate the impact of false positives and false negatives by
randomly adding and removing synapses to/from the draw according to

the precision (0.72) and recall (0.77) rates reported previously*. Ineach
round, we made two draws: (1) A draw using the original per-neuropil
postsynaptic completionrates; and (2) adraw where we flip the comple-
tionrates for left and right neuropils, thatis, use the left CA completion
rate for the right CA and vice versa.

Ineach ofthe 500 rounds that we ran, we drew two weights for each
edge. Both stem from the same fictive 100% ground-truth connectivity
but have been drawn according to the differences in left versus right
hemisphere completion rates. Combining these values, we calculated
the mean difference and quantiles as function of the weight for the
FlyWire left (thatis, the draw that was not flipped) (Fig. 4i). We focussed
this analysis on edge weights between 1and 30 synapses because the
frequency of edges stronger than that is comparatively low, leaving
gapsinthedata.

KC analyses

Connection weight normalization and synaptic budget analysis.
Whennormalizing connection weights, we typically convert themtothe
percentage of total input onto agiven target cell (or cell type). However,
inthe case of the mushroom body, the situation is complicated by what
we think s atechnical bias in the synapse detection methods used for
the two connectomes that causes certainkinds of unusual connections
tobevery differentin frequency between the two datasets. We find that
the total number of post-synapses as well as the post-synapse density
inthe mushroom body lobes are more than doubled in the hemibrain
compared with in FlyWire (Extended Data Fig. 7b,c). This appears to
be explained by certain connections (especially KC to KC connections,
which are predominantly arranged with an unusual rosette configura-
tion along axons and of which the functional significance is poorly
understood™') being much more prevalent in the hemibrain thanin
FlyWire (Extended Data Fig. 7d). Some other neurons, including the
APL giant interneuron, also make about twice as many synapses onto
KCsinthe hemibrain compared within FlyWire (Extended DataFig. 7a).
As a consequence of this large number of inputs onto KC axons in the
hemibrain, input percentages fromall other cells are reduced in com-
parison with FlyWire.

To avoid this bias, and because our main goal in the KC analysis was
to compare different populations of KCs, we instead expressed con-
nectivity as a fraction of the total synaptic budget for upstream or
downstream cell types. For example, we examined the fraction of the
APL output thatis spent on each of the different KC types. Similarly, we
quantified connectivity for individual KCs as a fraction of the budget
for the whole KC population.

Calculating K from observed connectivity. Calculation of K, that
is, the number of unique odour channels that each KC receives input
from, was principally based on their synaptic connectivity. For this, we
looked at their inputs from uniglomerular ALPNs and examined from
how many of the 58 antennal lobe glomeruli does a KC receive input
from. K as reported in Fig. 6 is based on non-thresholded connectiv-
ity. Filtering out weak connections does lower Kbut, importantly, our
observations (for example, that KCg-m cells have a lower K'in FlyWire
than in the hemibrain) are stable across thresholds (Extended Data
Fig.7g).

KC model. Asimple rate model of neural networks'* was used to gen-
eratethe theoretical predictions of K, the number of ALPN inputs that
eachKCreceives (Fig. 5k). KC activity is modelled by

h=W-r,,

where his avector of length Mrepresenting KC activity, Wisan M x N
matrix representing the synaptic weights between the KCs and PNs,
rpyisavector of length Nrepresenting PN activity. The number of KCs
and ALPNs is denoted by M and N, respectively. In this model, the PN
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activity is assumed to have zero mean, .,y = 0, and be uncorrelated,
oy By = Iy Here, Iy isan N x Nidentity matrix and v,y denotes the aver-
age taken over independent realizations of r,y. Then, the ijth element
of the covariance matrix of his

N

[C]ij = [h]i[h]j = Z [W]ik[W]jk.
k=0

More detailed calculations can be found in a previous report'?,
Randomized and homogeneous weights were used to populate W,
suchthateachrowin WhasKelementsthatarel-aandN - Kelements
that are —a. The parameter a represents a homogeneous inhibition
corresponding to the biological, global inhibition by APL. The value
inhibitionwas settobe a = A/M, where A =100 is an arbitrary constant
and Mis the number of KCs in each of the three datasets. The primary
quantity of interest is the dimension of the KC activities defined by

2
dim(h) = @
Tr[C]

and howitchanges with respect to K, the number of input connections.

In other words, what are the numbers of input connections K onto

individual KCs that maximize the dimensionality of their responses,

h, given MKCs, N ALPNs and a global inhibition a?

FromFig. 5k, the theoretical values of K that maximize dim(h) in this
simple model demonstrate the consistent shift towards lower values of
Kfoundinthe FlyWire left and FlyWire right datasets when compared
with the hemibrain.

Thelimitations of the model are as follows:

(1) The valuesinthe connectivity matrix W take only two discrete val-
ues, either 0 and1or1-aand a.Inaway, this helps when calculating
analytical results for the dimensionality of the KC activities. How-
ever, it is unrealistic as the connectomics data give the number of
synaptic connections between the ALPNs and the KCs.

(2) Theglobalinhibition provided by APL to all of the mixing layer neu-
rons is assumed to take a single value for all neurons. In reality, the
level of inhibition would be different depending on the number of
synapses between APL and the mixing layer neurons.

(3) Itis unclear whether the simple linear rate model presented in the
original paper represents the behaviour of the biological neural
circuit well. Furthermore, it remains unproven that the ALPN-KC
neural circuit is attempting to maximize the dimensionality of the
KC activities, albeit the theory is biologically well motivated (but
seerefs. 49,50).

(4) The number of input connections to each mixing layer neuron is
kept at a constant K for all neurons. It is definitely a simplification
that can be corrected by introducing a distribution P(K) but this
requires further detailed modelling.

Statistical analyses

Unless otherwise stated, statistical analyses (such as Pearson R or cosine
distance) were performed using the implementations in the scipy'®
Python package. To determine statistical significance, we used either
t-tests for normally distributed samples, or Kolmogorov-Smirnov
tests otherwise.

Cohen’s d”* was calculated as follows:
PR
s

where pooleds.d. sis defined as:

. (n,-1)s2+ (n, - 1)s3
) n+n,-2

where the variance for one of the groups is defined as:

n —
si= ﬁ Z':ll(xl,i -x)*
and similar for the other group.

Enhanced box plots—also called letter-value plots'®—in Fig. 5Sh and
Extended DataFig. 7fare a variation of box plots better suited to repre-
sent large samples. They replace the whiskers with a variable number
of letter values where the number of lettersis based on the uncertainty
associated with each estimate, and therefore on the number of obser-
vations. The ‘fattest’ letters are the (approximate) 25th and 75th quan-
tiles, respectively, the second fattest letters the (approximate) 12.5th
and 87.5th quantiles and so on. Note that the width of the lettersis not
related to the underlying data.

Mapping to the VirtualFlyBrain database

The VirtualFlyBrain (VFB) database® curates and extracts information
from all publications relating to Drosophila neurobiology, especially
neuroanatomy. The majority of published neuron reconstructions,
including those from the hemibrain, canbe examined in the VFB.Each
individual neuron (thatis, one neuron from one brain) has a persistent
ID (of the form VFB_xxxxxxxx). Where cell types have been defined, they
have anontology ID (for example, FBbt_00047573, the ID for the DNa02
DN cell type). Importantly, VFB cross-references neuronal cell types
across publications evenif different terms were used. It also identifies
driver lines to label many neurons. Inthis paper, we generate aninitial
mapping providing FBbt IDs for the closest and fine-grained ontology
termthatalready existsin their database. For example, a FlyWire neuron
with a confirmed hemibrain cell type will receive a FBbt ID that maps
to that exact cell type, while a DN that has been given a new cell type
might only map to the coarser term ‘adult descending neuron’. Work
is already underway with the VFB to assign both ontology IDs (FBbt)
to all FlyWire cell types as well as persistent VFB_ids to all individual
FlyWire neurons.

Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

Data artefacts from this paper are available at GitHub (https://github.
com/flyconnectome/flywire_annotations). This includes neuron anno-
tations and other metadata; high-quality skeletons for all proofread
FlyWire neurons; NBLAST scores for FlyWire versus hemibrain; all-by-all
NBLAST scores for FlyWire. The repository may be periodically updated
toimprove annotations, but older versions will always remain available
through GitHub’s versioning system. Moreover, neuron annotations
and other metadata are also provided in the Supplementary Informa-
tion. NBLAST scores and skeletons have been deposited in a Zenodo
repository (https://doi.org/10.5281/zenod0.10877326)*. Connectivity
data (for example, synapses table and edge list) are available (https://
doi.org/10.5281/zen0do.10676866)'". We provide a neuroglancer scene
preconfigured for display and query of our annotations alongside
the FlyWire neuron meshes and segmentation at http://tinyurl.com/
flywire783. Users can add the annotations to arbitrary neuroglancer
scenes themselves by adding a data subsource (Extended Data Fig.11).
There are two options: (1) “precomputed://https://flyem.mrc-lmb.cam.
ac.uk/flyconnectome/ann/flytable-info-783” containing super class,
cell type and side labels; (2) “precomputed://https://flyem.mrc-Imb.
cam.ac.uk/flyconnectome/ann/flytable-info-783-all” additionally con-
tains hemi-lineage information. We also provide programmatic access
totheannotations through our fafbseg R and Python packages (exam-
plesareprovidedin Table1and the online documentation). Annotations
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have also been shared with Codex (https://codex.flywire.ai/), the con-
nectome annotation versioning engine (CAVE), which can be queried
through the CAVEclient (https://github.com/seung-lab/CAVEclient)
and the FAFB-FlyWire CATMAID spaces (https://fafb-flywire.catmaid.
org). Atthe time of writing, access to Codex and CAVE requires signing
up using a Google account. To aid a number of analyses, hemibrain
neuron meshes were mapped into FlyWire (FAFB14.1) space. These can
be co-visualized with FlyWire neurons within neuroglancer (https://
tinyurl.com/flywire783; this scene also includes a second copy of the
hemibrain data (layer “hemibrain_meshes_mirr”), which have been
non-rigidly mapped onto the opposite side of FAFB).

Code availability

Analyses were performed using open-source packages using both the
R natverse'?® and Python navis infrastructures (a summary including
links is provided in Table 1). The fafbseg R and Python packages have
extensive functionality dedicated to working with FlyWire data, includ-
ing querying annotations, fetching connectivity and working with the
segmentation. Unless otherwise stated, all analyses were performed
against the 783 release version (that is, the second public datarelease
for FlyWire).
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Extended DataFig.1| Completion ofthe FlyWire whole-brain connectome
and cell typingreveal aleft-rightinversion of EMimage dataduring
acquisition of the underlying FAFB EM dataset. A Frontal views of the adult
fly brain are by convention shownin 2D projection, placing the fly’sright on the
left of the page. In this view, the asymmetric body (AB), whichis nearly always
larger onthe fly’sright'?™*, therefore appears on the left of the page (left
panel). During acquisition of the FAFB dataset, image mosaics were acquired
andinadvertently stored to disk with the left-right axisinverted. Thereforein
frontal view, the right side of the FAFB/FlyWire brain, and the larger AB, appear
ontheviewer’sright (right panel). Insets show axons of SA1-3 neurons, which
form the majorinput tothe AB. B Direct examination of an original EM-imaged

grid using differential interference contrast (DIC) microscopy and anacquired
EM mosaicin neuroglancer/catmaid confirms aleft-rightinversion during
image acquisition. Agrid with acrackinthe support filmand staining artefact
precipitate was selected in order to provide fiducials easily visible by light
microscopy (left panel). These same artefacts canbe seenin the EM mosaic
(right panel). CShowcase of how to programmatically correct the inversion

of FAFB/FlyWire data. Due to the large size of the original and derived datasets,
itwas nottechnically practical to correct the left-rightinversion onceit was
detected. Therefore this must be corrected post hoc. Code samples show how
thiscanbe done for e.g. mesh or skeleton data using Python or R (Methods,
“FAFB Laterality”).
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Extended DataFig.2|Hierarchical annotation examples. A Examples for mushroombody output neuron; ALLN, antennal lobe local neuron; ORN,
cell class annotations. BExamples for labels derived from the hierarchical olfactory receptor neuron; AN, antennal nerve.

annotations. Abbreviations: ALRN, antennal lobe receptor neuron; MBON,
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Extended DataFig. 3 | Hemilineage atlas. Anterior views of neurons within
ahemilineage (based on*'?), or neurons whose cellbodies formaclusterina
lineage clone (alsoreferred to as “hemilineages” hereafter), based on the light-
level data from®*1%°, The names of the hemilineages are at the bottom of each
panel (top: Hartenstein nomenclature; bottom: ItoLee nomenclature). The
snapshotsonlyinclude neurons with cellbodies on the right hemisphere, and
the central unpaired lineages. Except for the hemilineages that tile the optic
lobe, the neurons are coloured by morphological groups (see Methods,
Hemilineage annotations section). The neurons that form cohesive tracts with

their cellbody fibresinthe Typelllineages (see Methods) are at the lower part
ofthe panels. Thelast panel of the “Type Il’ section is for orientation purposes.
Thebottomright panelis a histogram of the number of morphological groups
per hemilineage (blue: hemibrain; orange: FlyWire right; green: FlyWire left).
Insetis the number of neurons per hemisphere in each morphological group,
with points coloured by their density (yellow: denser). Corresponding group
names, together with FlyWire and neuroglancer links are availablein
Supplementary Files 2and 3.
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Extended DataFig.4|Across-brain neuron matching. A Distribution of the
fraction of each FlyWire neuron’s cable that is contained within the hemibrain
volume:1=fully contained; O =entirely outside the volume. Note that where
necessary FlyWire neurons were transformed onto the opposite side of the
braintobetter overlap with the hemibrain. B Distribution of top FlyWire >
hemibrain NBLAST scores. C Top NBLAST score vs fraction of neuron
contained within hemibrain volume. Inafraction of cases, even heavily
truncated neurons can produce good scores and be successfully matched.

D Top: distribution of top NBLAST scores and fraction which was type matched.
Bottom: probability that the correct hit was the top NBLAST hit (green) or at
leastamong (yellow) the top10% as a function of the top NBLAST score. EWhen
some FlyWire neurons had good NBLAST matches against multiple hemibrain
celltypes, we cross-compared within-dataset morphological clustering
(dendrograms). We tried to assign hemibrain types to those ambiguous
FlyWire neurons to exactly match clustersinthe two dendrograms (“easy
case”). When this failed because a cluster in the dendrogram contained clear
matchesto>1hemibraintypes, we merged types (“hard case”). F Cross-brain
NBLAST co-clustering for example cell typesin Fig. 3: SIPO78/SIP0O80 (left) and
PS090 (right). Allhemibrain neurons are truncated. The FlyWire PSO90

neurons (2 per hemisphere, none truncated) splitinto two well-separated
clusters each containing one left and oneright neuron, suggesting that the
hemibrain cell type should be split. Thisis not the case for SIPO78/SIPO80
where the dendrogram cannot be splitinto subclusters containing neurons
from eachhemisphere. G Counts for 1:many and many:1type matches. These
alsoinclude types derived from previously untyped hemibrain neurons.
HExtended version of NBLAST hitgraph from Fig. 3k. Here, grey dotted arrows
indicate matches to types outside of the displayed subgraph.IFraction of cell
types showing adifference in cell counts within (left/right, top) and across
(bottom) brains. ] Distribution of cell count differences. K Robust linear
regression (Huber w/ intercept at O) for within-and across-dataset pre/
postsynapse counts from Fig.3h.LSame dataasin Kbut separated by superclass.
Slopes aregenerally close to1:1.021 (pre-) and 1.035 (postsynapses, i.e. inputs)
betweentheleftand right hemisphere of FlyWire,and 1.176 (presynapses, i.e.
outputs) 0.983 (post) between FlyWire and the hemibrain. Note that correlation
andslopeare noticeably worse for cell types known tobe truncated such as
visual projection neurons which suggests that we did not fully compensate for
the hemibrain’s truncationand that the actual across-brain correlation might
beevenbetter.
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Extended DataFig. 5| Examples of biological outliersand sampleartefacts.  (red) take adifferenttract. FExample of sample artefact: the axon of the left
ALC6 andLC9 neurons (lineage VPNd3) of the right and left hemispheres take DM3 adPN has very dark cytosol which affects both the neuron segmentation
differentroutesin FlyWire to equivalent destinations (previously reportedin*).  aswell as synapse detection. Insets compare two locations along the axons

Mushroombody (MB) peduncleis shown in pink. BExample of aleft/right betweentheleftandright neurons. G Asubset of neurons fromthe ALI1ventral
neuron pair where one side has extradorsal and smaller ventral dendrites hemilineage where the right neurons are missing their entire dendrites

(red arrowheads). C A TuBu neuron (black) with correctly placed axon but (red arrow). The exactreason for thisis unknownbutitis not due to insufficient
misplaced ventral dendrites. Regular TuBu neurons shownin background proofreading. H Quantification of recorded outliers and sampling artefacts
for reference. D Asingle Kenyon Cell whose axon projects outside of the broken down by super class. Total number of neurons (left) as well as fraction
mushroombody, descending through the medial antennal lobe tract. E Cell (right) are shown. The number of biological outlier neurons is -0.4% of the total

type (CB1029, DM6 ventral hemilineage) where the left neurons’ dendrites number of neuronsin the brain.
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Extended DataFig. 6| Across-brain connectivity. A Comparison of normalized
edge weights within (left) and across (right) brains. B Connectivity cosine
connectivity similarity within and across brains. Each datapointisacell type
identified across the three hemispheres. Size correlates with the number of
cells per type. C Connectivity cosine similarity separated by neurotransmitter.
Errorbarsrepresent the 95% CI. D Probability that an edge presentin the

hemibrainis foundin one, both or neither of the FlyWire hemispheres.
EFractionofsynapses contained in edges above given absolute (left) and
normalized (right) weight. Horizontal lines mark the thresholds fora90%
chancethatanedgeisfoundinanother hemisphere. F Postsynapticcompletion
rates. Each datapointis aneuropil.
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Extended DataFig.7|Across-brain mushroombody comparison. A Graph
showing ALPN/APL > KC connectivity across the three datasets. Edge labels
provide weights both as total synapse counts and normalized to the total
outputbudget of the source. In FlyWire, the mushroom bodies (MB) have 57.2%
(left) and 60.7% (right) postsynaptic completion rate while the hemibrain MB
has been proofread to 81.3% (see also B). To compensate for this we typically
used normalized synapse counts and edge weights. Note that KCab actasan
internal control as their numbers are consistent across allhemispheres and we
don’texpecttosee any changesin their connectivity. B Total versus proofread
postsynapse counts across MB compartments. Lateral horn (LH) shown for

comparison. C Postsynapse density across MB compartments. D Connectivity
betweendifferent MB cell classes. Inset shows an example of KC » KC and

KC > MBON synapseinthe hemibrain. EPresynapse counts per KC type
normalized to the total number of KC synapses per dataset. FALPN > KC edge
weights. See Methods for details on enhanced box plots. GK (# of ALPN types
providinginputtoasingle KC) under different synapse thresholds. HFraction
of MBON input budget coming fromindividual KCab, KCg-mand KCa’b’.
Abbreviations: CA, calyx; DAN, dopaminergic neuron; ALPN, antennal lobe
projection neuron; KC, Kenyon Cell; MBON, mushroom body output neurons.
Kolmogorov-Smirnov test (F):*, p<=0.05;**, p <=0.01;*** p <=0.001.



A frontal dorsal B

FB1-9
+ 140
FC1-3 ‘” AL embedding ¢ 120
ﬁg‘ N ‘E 100
: 2 3
2 h & 80
g ‘ 3
38 1 g o
§ ?n o s 40
(‘g g é’ * 20
g3 0
83 N
§° L. «,‘a\“ss/‘,@“
L 3
| D
-l —
. 2
CB.FBSE1 CB.FB5D4 d
£ Le,
E hemib(rwaEig) types ] cioszs+brai£1 typfaﬂ F (;;‘»n ? : :A ,(::‘7 ("
FBiE m carsiEy
FBID = CB.FB1E1
e = Corair
B = il
FBIB = CB.FBII 2 R 3 e
FB2G = CB.FB2EO a Al At A A E
Fe2M = CBFB2ET
re2F I CB.FB2E3
FB2I B CB.FB2E2
o = = Sreikh e
Foat = — CBFBIEG = A x = * A
B8 = FRes
FB2A = CB.FB2E7
FB2L —
FBK = CRERSEY .
foic = Sre
e a * * i % X
FB4X — CB.FB213
FBAL = = CB.FB2KO
FB4K = - CBFB2K1 .
FBaK = caraact
R = E3FR3iAls yoe ¥ x e o e
FB4O = CB.FB3,4A2
Fae B EFasire
PRIk = SarBaA0 )
RS = i -
FeaF I CoFasibo X -~ s b B (I
FBgG = CorFasan
B = CBFB3AI3
E:zs : glé ;E%z:; C8.F85.4D1 carB3,401 curs3.AD2 Yy caran cursaR
£ade = Corpaale i Ky & 9 *
FB3D — CB.FB34I5
e e EE
FB3E - Carmaan
reez Il CB.FB3,4D2 - - P 20 2 T
FBSR = CB.FB5,4B0
FFEBSST - CB.FB5,4D1
foes = - cBFBsB0
BT - Ca Fasat B I, oy b o
FB5AA — CB.FB5D0
FFEBS% : CB.FB5D1
FBSC — CB.FB5D10
FBod = co 02
el Ca Fasos (R T s x 4 (¥
FB6R = CB.FB5D4
FBEY — CB.FB6C2
FRet = CBEBoDS came cormsos o
FB5P = CB.FB5D8 S o 2 -~ i
FBSO — CB.FB5D9 (
FB5I — GBFB5E0
FBSY = CB.FB5SE1
B o o]
FBSAB — CB.FB5G0 s FsE) chFRsF0 crFRsFL chFRSGO cr RS0 cn RS
Fhe) = CBFBIT :
8ol = CB.FB5I2 o L~ P\ e
FBSN —
Fog - = &Breee
ooy m cE et e -
FB6T = CBFB6BI =
FB6Q — — CBEBECO to 2 o ~ ~
e = - gk
ERlE = CBFB6CA
FB6V — CB.FB6DO
FBEU = CB.FB6D1
F00 = CBroeot i o
e g : ~ ¥ i~
Foec m GBEERE
FB6l — CB.FBBE3
Foen =
FB6D — CB.FBBE4
FBGE — cBrBsDZ curBsE0 cBrBsEl curssez cBrBeEs. )
FBeg = CB.FBEES ol X Bad W Z A
FBEM = CB.FB6FO
FBeR = CB.FB6I0
FB6O — CB.FB6I1
e = CBFETED
pBrc — CB.FB7CO ’
Fri = It o o
FerG = caraT00 ¢ T
FB7E = CB.FB7D1
FB7L = CB.FB7E0
FB7A = CB.FB7E1 cBrB701 care7ED cararel corerez ca.rese0
FaTK = CBFB7E2 B S
FB8E = CB.FB8BO 5 T S % s
FBBC = CB.FB8B1
[ | = CB.FBSC2
= = SRy
oo = G e T3 e o
;‘;SE = CBFBED1
FBeA = Garooes
FBSC m CB.FBSE1
FBOA = CB.FBICO coFas01 ce.ra802 ce.rese0 coraser L-lrn(b um:.f
raos [ bt v g o & &
FBIH — CB.FBODO {
L SR
SAF = CB.FBTI
Extended DataFig. 8| Across-brain co-clustering. A FC1-3 across-brain cross-brain FB1-9 cell types. D Examples from the FB1-9 cross-brain cell typing.
cluster from Fig. 6d (asterisk) that was manually adjusted. This group consists Labels are composed from CB.FB{layer}{hemilineage-id}{subtype-id}; fan-
of three sub-clusters that technically fulfil our definition of cell type. Theywere  shaped body outlined. E Flow chart comparing FB1-9 hemibrain and cross-brain
merged, however, because they individually omit columns of the fan-shaped celltypes. Colours correspond to1:1, 1:many, many:1and many:many mappings
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Data artefacts from this paper are available at https://github.com/flyconnectome/flywire_annotations.

This includes:

- neuron annotations + other metadata

- high quality skeletons for all proofread FlyWire neurons

- NBLAST scores for FlyWire vs. hemibrain

- all-by-all NBLAST scores for FlyWire
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In addition, neuron annotations + other meta data are also available for download in the supplementary materials; NBLAST scores and skeletons have been
deposited in a Zenodo repository: https://zenodo.org/records/10877326 (doi: 10.5281/zenodo.10877326).
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tinyurl.com/flywire783. Users can add the annotations to arbitrary neuroglancer scenes themselves by adding a data subsource (see Extended Data Figure 11).
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“precomputed://https://flyem.mrc-Imb.cam.ac.uk/flyconnectome/ann/flytable-info-783-all” additionally contains hemi-lineage information
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Annotations have also been shared with Codex (https://codex.flywire.ai/), the connectome annotation versioning engine (CAVE) which can be queried through e.g.
the CAVEclient (https://github.com/seung-lab/CAVEclient), and the FAFB-FlyWire CATMAID spaces (https://fafb-flywire.catmaid.org). At the time of writing access
to Codex and CAVE requires signing up using a Google account.

To aid a number of analyses, hemibrain neuron meshes were mapped into FlyWire (FAFB14.1) space. These can be co-visualised with FlyWire neurons within

neuroglancer (e.g. https://tinyurl.com/flywire783; this scene also includes a second copy of the hemibrain data (layer hemibrain_meshes_mirr) which has been non-
rigidly mapped onto the opposite side of FAFB).
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